State of Missouri Department of Natural Resources

ALPD/HWP/FFS

STANDARD LEVEL IV REPORT OF ANALYSIS

WORK ORDER #05-08094-OR

September 14, 2005

EBERLINE SERVICES/OAK RIDGE LABORATORY OAK RIDGE, TN

TABLE OF CONTENTS

SECTION	DESCRIPTION	PAGE
I	Chain of Custody	004
11	Sample Acknowledgement	012
Ш	Case Narrative	015
IV	Analytical Results Summary	019
V	Analytical Standards	025
VI	Quality Control Sample Results Summary	047
VII	Laboratory Technician's Notes	054
VIII	Analytical Data (Isotopic Uranium)	073
IX	Analytical Data (Isotopic Thorium)	178
IX	Analytical Data (Radium-226)	280
	Total Number of Pages 444	

STANDARD OPERATING PROCEDURE

Sample Receiving

MP-001, Rev. 7 Effective: 10/31/03 Page 12 of 12

Eberline Services - Oak Ridge Laboratory

LABORATORY DATA SUPPORT CHECKLIST MP-001-3

al/Clerical Cor	rections	\$ 19/05 91405 91405 91405 91405 91405	CAR MAN GO. N	Data Compilation Technical Data F Data Entry/Electr Case Narrative Electronic Deliver Samples Analyze QA/QC Review Invoiced by Labor	ronic Deliverable erable Proof ed within Holding Time
al/Clerical Cor	rections	9/4/05 9/9/05 9/14/05 9/14/05	Now GO. H	Technical Data F Data Entry/Electro Case Narrative Electronic Deliver Samples Analyzer QA/QC Review Invoiced by Labor	Review ronic Deliverable erable Proof ed within Holding Time
al/Clerical Cor	rections	9/9/05 9/14/05 9/14/05	Q.N	Data Entry/Electronic Case Narrative Electronic Deliver Samples Analyzer QA/QC Review Invoiced by Labor	erable Proof ed within Holding Time
al/Clerical Cor	rections	9/9/05 9/14/05 9/14/05	Q.N	Case Narrative Electronic Deliver Samples Analyze QA/QC Review Invoiced by Labor	erable Proof ed within Holding Time ? oratory
al/Clerical Cor	rections	9/14/05 9/14/05	Q.N	Samples Analyze QA/QC Review Invoiced by Labo	erable Proof ed within Holding Time
al/Clerical Cor	rections	9/14/05	Q.N	Samples Analyze QA/QC Review Invoiced by Labo	ed within Holding Time P
al/Clerical Cor	rections	9/14/05	Q.N	QA/QC Review Invoiced by Labo	pratory
al/Clerical Cor	rections		es Needed, P	QA/QC Review Invoiced by Labo	pratory
al/Clerical Cor	rections	s, Signature	es Needed, P		
al/Clerical Cor	rections	s, Signaturo	es Needed, P		
			 		
		_		0/	11 -
	1	. /	- Leve		
l	Laborato	ry wanage i	T ()	Dat	ie
•	proved by:	, ,	proved by:		proved by:

SECTION I CHAIN OF CUSTODY

76080-20 المحا ALIG 1 9 2005 M COL ೯೨ MISSOURI DEPARTMENT OF NATURAL RESOURCES | 0 FIELD SHEET AND CHAIN-OF-CUSTODY RECORD

A CONTRACTOR OF THE CONTRACTOR						Hills I y all b	*		
Collector's Name (Please Print):		Darrick Steen	ıı					Description of Shipment	
					-	X Shaped-Capter C	\$2		
					لـ	X THAE seldedenne mitialed	itialed		
Affiliation (Division/Program/Section):	ram/Section):		ALPD/H	WP/FFS		Hand Delivered		No. Of C	No. Of Containers: 40
Sample Number	Sample		Analyses			Sample		For Lab Use Only	<u> A</u>
rampar aidima	Collected		Analyses			Type	Matrix	Container	Preserved
	Date: Iso	Iso Th, Iso U, Ra226	1,276					IL amber	H_2SO_4
VPSCPOR1205SI 01	08/17/05					X Grab	Water	Cubitainer	HNO 3
VI SCHOOL/ USSEST	60/1/00					Composite	X Soil	2 oz glass	NAOH
	Time:					Modified	Organic	8 oz glass	HCL
For Lab Use Only	$^{\mathrm{Hd}}$	Temp.	Spec. Cond. D.O.	Flow	Other:	Other:	Sludge	VOA vial	X None
	10:0 2 AM						Other:	Encore	Disinfected
								X Other:	
	Date: Iso	Iso Th, Iso U, Ra226	1226					1L amber	H_2SO_4
VPSCR081705SI 02	08/17/05					X Grab	Water	Cubitainer	HNO 3
						Composite	X Soil		NAOH
	Time:	•				Modified	Organic		HCL
For Lab Use Only	Hd	Temp.	Spec. Cond. D.O.	Flow	Other	Other:	Sludge	VOA vial	X None
	10:04 AM						Other:	Encore	Disinfected
								X Other:	
	Date: Iso	Iso Th, Iso U, Razze	1226					IL amber	H_2SO_4
VPC/CP081705CI 03	08/17/05					X Grab	Water	Cubitainer	HNO 3
	00/1/100					Composite	X Soil	2 oz glass	NAOH
	Time:					Modified	Organic	8 oz glass	HCL
For Lab Use Only	Hd	Temp.	Spec. Cond. D.O.	Flow	Other:	Other:	Sludge	VOA vial	X None
	10:0 8 AM						Other:	Encore	Disinfected
								X Other:	
	Date: Iso	Iso Th, Iso U, Razze	1 226					IL amber	H_2SO_4
VPSCR081705SL04	08/17/05					X Grab		Cubitainer	HNO 3
						Composite	X Soil		NAOH
	Time:					Modified	Organic		HCL
For Lab Use Only	$^{ m Hd}$	Temp.	Spec. Cond. D.O.	Flow	Other:	Other:	Sludge	VOA vial	X None
	10:09 MM						Other:	Encore	Disinfected
		7						X	
Relinquished By:	James	A	Rece	Received By:	The state of	Ω	Date: 8/18/05	Time:	2:80pm
Relinquished By:			Rece	Received By.		Ω	ate:	Time:	
	Ustrais			2	nnible	<u>۲</u>	S0/19/18		S
Refinquished By:	•		Rece	Received By:		Ω	Date:	Time:	
5									

MISSOURI DEPARTIMENT OF NATURAL RESOURCES

Gr. Œ 2

=

Disinfected Disinfected Disinfected Disinfected 05-08094 6 H_2SO_4 H_2SO_4 H_2SO_4 H_2SO_4 HNO 3 HNO_3 NAOH HNO_3 NAOH. NAOH HNO_3 NAOH Preserved None None NoneNone HCLHCLHCL HCLMd 80: 0 No. Of Containers: Time: \$ 900 For Lab Use Only Cubitamer Cubitainer Cubitainer Cubitainer 2 oz glass 2 oz glass 8 oz glass 2 oz glass 8 oz glass 2 oz glass 8 oz glass 8 oz glass VOA vial IL amber IL amber IL amber 1L amber VOA vial VOA vial VOA vial Encore Encore Encore Encore Other: Other: Other: Other: Time: Time: Container Description of Shipment Date: 8/18/05 Organic Organic Organic Organic Sludge SludgeSludge Sludge Other: Other: Other: WaterWater Water Water Soil Soil Soil Soil Matrix X Tape sealed and initiated X Shipped-Carrier: UPS Date: 9 2005 MODINE Hand Delivered Sample Composite Composite Composite Composite Modified AUG Type Modified Modified Modified Other: Other: Other: Other: X Grab X Grab X Grab X Grab Other: Other: Other: Other: FIELD SHEET AND CHAIN-OF-CUSTODY RECORD Flow ALPD/HWP/FFS Flow Flow Flow Received By: Received By: Received By Spec. Cond. D.O. Spec. Cond. D.O. Spec. Cond. D.O. Spec. Cond. D.O. Analyses Iso Th, Iso U, Ra226 Iso Th, Iso U, Ra₂₂₆ Iso Th, Iso U, Ra₂₂₆ Iso Th, Iso U, Ra₂₂₆ Darrick Steen Temp. Temp. Temp. Temp. Affiliation (Division/Program/Section): 10:21 AM 10:11 AM 10:18 AM 10:20 AM Collected 08/17/05 08/17/05 08/17/05 08/17/05 Sample rime: rime: Date: Time: Date: lime: Date: Collector's Name (Please Print): VPSCR081705SL06 VPSCR081705SL08 VPSCR081705SL05 VPSCR081705SL07 Sample Number For Lab Use Only For Lab Use Only Relinquished By: Relinquished By: For Lab Use Only For Lab Use Only Relinquished By:

MISSOURI DEPARTMENT OF NATURAL RESOURCES FIELD SHEET AND CHAIN-OF-CUSTODY RECORD

RESOURCES D \mathbb{R} \mathbb{R}

05-0809

Disinfected Disinfected Disinfected Disinfected 6 H_2SO_4 H_2SO_4 H_2SO_4 H_2SO_4 HNO_3 NAOH HNO_3 NAOH NAOH HNO_3 N4OH HNO 3 None None None None Preserved HCL HCLHCL HCLTime: 7:88 PM No. Of Containers: 0900 For Lab Use Only Cubitainer Cubitainer 2 oz glass Cubitainer 2 oz glass Cubitainer 2 oz glass 8 oz glass 2 oz glass IL amber 8 oz glass 1L amber 8 oz glass 1L amber 8 oz glass IL amber VOA vial VOA vial VOA vial VOA vial Encore Encore Encore Other: Encore Other: Other: Other: Time: Time: Container Deseription of Shipment Organic ! Organic Organic Organic Sludge Sludge Sludge Sludge Other: Other: Other: Other: Water Water Water Water Soil Soil Soil Soil Matrix Tape seafed brie inithed Date ⊘Ge Date: Shipped Camaga, URS MODNR Hand Delivered Sample Composite Composite Composite Composite Type Modified Modified Modified Modified Other: Other: Other: Other: X Grab X Grab X Grab X Grab Other: Other: Other: Other: Flow Flow Flow Flow ALPD/HWP/FFS Received By: Received By:1 Received By Spec. Cond. D.O. Spec. Cond. D.O. Spec. Cond. D.O. Spec. Cond. D.O. Analyses Iso Th, Iso U, Ra₂₂₆ so Th, Iso U, Ra₂₂₆ Iso Th, Iso U, Ra₂₂₆ so Th, Iso U, Ra₂₂₆ Darrick Steen Temp. Temp. Temp. Temp. 띰 Affiliation (Division/Program/Section): 10:30,AM 10:23 AM 10:27 AM 10:25 AM Collected 08/17/05 08/17/05 08/17/05 08/17/05 Sample Time: Fime: Time: Date: Time: Date: Date: Collector's Name (Please Print): VPSCR081705SL10 VPSCR081705SL11 VPSCR081705SL09 VPSCR081705SL12 Sample Number Relinquished By: Relinquished By: For Lab Use Only For Lab Use Only Por Lab Use Only For Lab Use Only Relinquished By:

MISSOURI DEPARTMENT OF NATURAL RESOURCES FIELD SHEET AND CHAIN-OF-CUSTODY RECORD

7

05 - 0809

Disinfected Disinfected Disinfected Disinfected 40 H_2SO_4 H_2SO_4 H_2SO_4 H_2SO_4 $-HNO_3$ NAOH NAOH. HNO_3 N4OH HNO 3 NAOH HNO 3 None None Preserved None NoneHCL HCLHCLMd 90: 6 No. Of Containers: 8900 For Lab Use Only Cubitainer Cubitainer Cubitainer Cubitainer 2 oz glass 2 oz glass 2 oz glass 2 oz glass 8 oz glass 8 oz glass 8 oz glass 8 oz glass IL amber IL amber IL amber IL amber VOA vial VOA vial VOA vial VOA vial Encore Encore Other: Encore Encore Other: Other: Time: Other: Time: Time: Container Description of Shipment 50/81/ Organic Organic Organic Organic Sludge Sludge Sludge SludgeOther: Other: Water Water Water Water Soil Soil Soil Soil Matrix Date: 8/ Date: Shipped-Carrier Specime X Tape sealed and initialed Date: Hand Delivered Sample Composite Composite Composite Composite _Modified Type Modified Modified Modified Other: Other: Other: Other: X Grab X Grab X Grab X Grab Other: Other: Other: Other: Flow Flow ALPD/HWP/FFS Flow Flow Received By: Received By: Received By Spec. Cond. D.O. Spec. Cond. D.O. Spec. Cond. D.O. Spec. Cond. D.O. Analyses Iso Th, Iso U, Ra226 Iso Th, Iso U, Ra₂₂₆ Iso Th, Iso U, Ra226 Iso Th, Iso U, Ra₂₂₆ Darrick Steen Temp. Temp. Temp. Temp. Affiliation (Division/Program/Section): Collected 10:32 AM 10:44 AM 10:46 AM (0:51 AM 08/17/05 08/17/05 Sample 08/17/05 08/17/05 Date: Time: Date: Time: Date: lime: Date: Time: Collector's Name (Please Print): VPSCR081705SL14 VPSCR081705SL13 VPSCR081705SL16 VPSCR081705SL15 Sample Number For Lab Use Only For Lab Use Only For Lab Use Only Relifiquished By: For Lab Use Only Relinquished By: Relinquished By:

Internal Chain of Custody

Work Order #	05-08094
Lab Deadline	9/9/2005
Analysis	UUISO - Level 4
Sample Matrix	Soil/Solid

Comments	Sample Fraction	HP 210 / 270 Detector Activity	Storage Location
	04	42	J1.1
	05	35	J1.1
	06	45	J1.1
	07	38	J1.1
	08	41	J1.1
	09	38	J1.1
	10	41	J1.1
	11	47	J1.1
	12	37	J1.1
	13	30	J1.1
	14	42	J1.1
	15	37	J1.1
	16	46	J1.1
	17	41	J1.1

		Locatio	on (circle	e one)		Initials	Date
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room /330	Kenny Salligo	8-19-05
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room 1450	Kenny Sollings	8-12-05
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	Ramord	Stratator
Relinquished by	Sample Storage	Rough Prep	Pcep	Separations	Count Room	Jamad	bellos can
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	Sta W	8-24-05 0600
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room	mult	2/clos 700
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	Vertaus.	9.2-05 0700
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room	muraly	9.2.05
Received by	cample Storage	Rough Prep	Prep	Separations	Count Room		
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		

Internal Chain of Custody

Work Order #	05-08094
Lab Deadline	9/9/2005
Analysis	ThISO - Level 4
Sample Matrix	Soil/Solid

Comments	Sample Fraction	HP 210 / 270 Detector Activity	Storage Location
No.	04	42	J1.1
,	05	35	J1.1
	06	45	J1.1
	07	38	J1.1
	08	41	J1.1
	09	38	J1.1
	10	41	J1.1
	11	47	J1.1
	12	37	J1.1
	13	30	J1.1
	14	42	J1.1
	15	37	J1.1
	16	46	J1.1
	17	41	J1.1
	•		

		Locatio	n (circle	e one)			Initials	Date
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	1336	Kenny Schoige	8.19.05
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room	1450	Kenny Sallings	8-22-05
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		Ramore	STOTEMS
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		Ramax	1-h.1-16x
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		Stu M	8-77-09 100
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		Must 9	12/05 1900
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room) (PITTUE	9705 0700
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		Partice	9.2-05 1130
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		0'''	
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room			
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room			
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room	***************************************		
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room			
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		***************************************	***************************************

Internal Chain of Custody

Work Order #	05-08094
Lab Deadline	9/9/2005
Analysis	Ra226 - Level 4
Sample Matrix	Soil/Solid

Comments	Sample Fraction	HP 210 / 270 Detector Activity	Storage Location
	04	42	J1.1
	05	35	J1.1
	06	45	J1.1
	07	38	J1.1
	08	41	J1.1
	09	38	J1.1
	10	41	J1.1
	11	47	J1.1
	12	37	J1.1
	13	30	J1.1
	14	42	J1.1
	15	37	J1.1
	16	46	J1.1
	17	41	J1.1

		Locatio	on (circl	e one)		Initials	Date
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room 1330	Kenny Schlig	8-19-05
Relinquished by	Sample Storage (Rough Prep	Prep	Separations	Count Room 1450	Henry Schie	8-22-05
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	Homand	30151150
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room	TREMONE	Jados 124
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room 245	I	0/26/05
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Roomi 330	SH	8/26/05
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	July Paris	8-26-05/230
Relinquished by	Sample Storage	Rough Prep	Prep	Separations (Count Room	Eg. Phis	8-2905 0645
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room	0/1	
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Received by	Sample Storage	Rough Prep	Prep	Separations	Count Room		
Relinquished by	Sample Storage	Rough Prep	Prep	Separations	Count Room		

SECTION II SAMPLE ACKNOWLEDGEMENT

Column C		Client Name	Contract/PO	Project Type	L adv		قا	Date Received			Required	Turnarc	Required Turnaround Days			Eberline Services Work Order	ervices W	ork Orde).	
Project Numer Project Nume	Missouri	i Dept. of Natural Resources	C30209200		ental		08/	19/200)5			28				05-	080	94		
B B B B B B B B B B		Project Name	Client WO	Sample D	dsi			ab Deadline			Inte	rnal Dea	dline			Clie	ent Deadli	ne		
Colored Decrease		B3Z02092	ALDP/HWP/F				1/60	09/200)5		./60	15/2	2005			09/1	6/2	005		
10.1 LCS BHANK BH	Internal ID	Client ID				 														ВТ
December	01	SOT					-													m
049 DUPP December December Storage	02	BLANK																		ю
646 VPSCR081705SL01 analyzis and so of some size of the control and size of the control an	03	DUP					-													м
06 VPSCR081705SL02 authors took 50 11.11 X X X X X C C C C C C C C C C C C C C	04	VPSCR081705SL01		:																3
007 VPSCR081705SL04 800708 k9CR081705SL04 800708 k9CR081705SL04 800708 k9CR081705SL04 800708 k9CR081705SL05 800708 k9CR081705SL05 800708 k9CR081705SL05 800708 k9CR081705SL01	0.5	VPSCR081705SL02	-																	3
006 VPSCR081705SL04	90	VPSCR081705SL03																		ю
099	07	VPSCR081705SL04																		3
999 VPSCR081705SL06 09017050 to 10 to	80	VPSCR081705SL05																		т
11	60	VPSCR081705SL06	-																	м
112 VPSCR081705SL099 09t7/905 10.21 X X X X X X X X X X X X X X X X X X X	10	VPSCR081705SL07																		ю
12	11	VPSCR081705SL08																		ю
134	12	VPSCR081705SL09																		Э
146 VPSCR081705SL11 09(1705 10:27) SO 11.1 X X X X X C C C C C C C C C C C C C C	13	VPSCR081705SL10																		Э
15 VPSCR081705SL12 06/17/05SL13 SO 11.1 X X X X R R R R R R R R R R R R R R R	14	VPSCR081705SL11	-																	ю
17 VPSCR081705SL14 08/12/05 10:34 SO 11.11 X X X X R R R R R R R R R R R R R R R	15	VPSCR081705SL12													-					ю
17 VPSCR081705SL14	16	VPSCR081705SL13																		ю
Totals Per Analysis (non QA samples) 14 14 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17	VPSCR081705SL14																		ю
Totals Per Analysis (non QA samples) 14 14 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																				0
Totals Per Analysis (non QA samples) 14 14 14 16 0 0 0 0 0 0 0 0 0																				0
Totals Per Analysis (non QA samples) 14 14 14 16 0 0 0 0 0 0 0 0 0																				0
Invoice Accounts Payable Report Data Steel			Totals Per Analysi	s (non QA sampl		\vdash		0	0				0						0	
Column C						Invo		Accounts Payable	Ð	Rep	ort Data		ve Lang							
EBERLINE Oak Ridge, TN 37830 Voice 314-877-3252 Sample Log In Report Fax: (865) 481-0683 Contact Steve Lang Voice 314-877-3254 Fax: (865) 483-4621 Contact Steve Lang Voice 314-877-3254 Fax: (865) 483-4621 Fax: (865) 483-4621 Contact Steve Lang Voice 314-877-3254 Fax: (865) 483-4621 Fax: (865) 483-4621 Contact Steve Lang Voice 314-877-3254	<u> </u>		Oak Ridge	aboratory				Missouri Dept. of Na 917 Hwy 67 North	atural Resources h #104			Mis 917	souri Dept. of 7 Hwy, 67 No	Natural Resor	urces					
Sample Log In Report Voice: (865) 481-0683 Fax 314-877-3254 Fax 314 Fax: (865) 483-4621 Contact Steve Lang Voice 314-877-3254 Fax 314-877-3254 Fax 314-877-3254		I BERT SERVICES	601 Scarbo Oak Ridge,	ro Rd. TN 37830				Florissant, MO 63	3031			P.	rissant, MO	63031						
Fax: (865) 483-4621 Contact Steve Lang Voice 314-877-3252 Fax 314-877-3254		Sample I od in Report	Voice: (86)	7.481-0683		<u> </u>		314-877-3252					4-877-3252							
Voice 314-877-3252 Fax 314-877-3254			:	5) 483-4621	<u></u>	֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		Storie 200				_	+-077-1-194							T
Fax	0			1 201 001 (0		5 5		314-877-3252					eMail	file to	Ste\	ve Lan	<u>D</u>			
	13					Fa		314-877-3254									,			

Copy No.

STANDARD OPERATING PROCEDURE

Sample Receiving

MP-001, Rev. 7 Effective: 10/31/03 Page 11 of 12

Eberline Services - Oak Ridge Laboratory

SAMPLE RECEIPT CHECKLIST MP-001-2

work order # <u>05 - 08094</u>				
SAMPLE MATRIX/MATRICES:	(CIRCL	E ONE	OR BO	TH)
	AQUEC	ous	NON-	AQUEOUS
WEDE CAMBLES	(CIRCL	E EITH	IER YES	S, NO, OR N/A)
WERE SAMPLES: Received in good condition?	\bigcirc	OR	N	
If aqueous, properly preserved	Y	OR	N	N/A
	•	OIX	14	
WERE CHAIN OF CUSTODY SEALS:	\bigcirc	OB	N.	<u>.</u>
Present on outside of package? Unbroken on outside of package?	\bigotimes	OR OR	N N	
Present on samples?	\Rightarrow	OR	N	
Unbroken on samples?	\bigcirc	OR	N	
Was chain of custody present upon sample receipt?	,			
IF ANY OF THE ABOVE ARE CIRCLED, A DISCREPANT SAMBEEN ISSUED. REMARKS:		EIPT F	REPORT	「(DSR) HAS
SIGNATURE: Dannis Ler	DATE: 8	1/19	Los	

Radiochemical Services

SECTION III CASE NARRATIVE

EBS-OR-22937

September 14, 2005

Steve Lang Missouri Dept. of Natural Resources St. Louis Field Office 917 Hwy. 67 North, Suite 104 Florissant, MO 63031 Oak Ridge Laboratory 601 Scarboro Road Oak Ridge, TN 37830 Phone (865) 481-0683 Fax (865) 483-4621

CASE NARRATIVE Work Order# 05-08094-OR

SAMPLE RECEIPT

This work order contains fourteen soil samples received 08/19/2005. These samples were analyzed for Isotopic Uranium, Isotopic Thorium and Radium-226.

<u>CLIENT ID</u>	<u>LAB ID</u>	<u>CLIENT ID</u>	<u>LAB ID</u>
VPSCR081705SL01	05-08094-04	VPSCR081705SL08	05-08094-11
VPSCR081705SL01	05-08094-05	VPSCR081705SL09	05-08094-12
VPSCR081705SL03	05-08094-06	VPSCR081705SL10	05-08094-13
VPSCR081705SL04	05-08094-07	VPSCR081705SL11	05-08094-14
VPSCR081705SL05	05-08094-08	VPSCR081705SL12	05-08094-15
VPSCR081705SL06	05-08094-09	VPSCR081705SL13	05-08094-16
VPSCR081705SL07	05-08094-10	VPSCR081705SL14	05-08094-17

The file name for these samples is 0508094.XLS.

ANALYTICAL METHODS

Isotopic Uranium was analyzed using Method EML U-02 Modified. Isotopic Thorium was analyzed using Method EML Th-01 Modified. Radium-226 was analyzed using EPA Method 903.0 Modified.

ANALYTICAL RESULTS

ISOTOPIC URANIUM

Samples were prepared by removing a representative aliquot from each sample followed by mixed acid digestions as appropriate. Uranium was selectively extracted by ion exchange. Uranium was eluted, micro-precipitated and mounted on micro-porous filter media. Sample activities were then determined by alpha spectroscopy using energy specific regions of interest for Uranium-234, Uranium-235 and Uranium-238. Chemical recovery was determined by the use of a Uranium-232 tracer. Activity of the Uranium-232 tracer was determined by alpha spectroscopy using an energy specific region of interest.

Samples demonstrated background equivalent results for Uranium-234, Uranium-235 and Uranium-238 activity. Chemical recovery was acceptable for all samples. Results for the Uranium-234, Uranium-235

ANALYTICAL RESULTS CONTINUED

ISOTOPIC URANIUM CONTINUED

and Uranium-238 method blank demonstrated background equivalent activity. Results for the Uranium-234 replicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Uranium-235 and Uranium-238 replicate demonstrated a slightly high relative percent difference; however, normalized difference is within acceptable limits for the analytical technique. Results for the Uranium-234, Uranium-235 and Uranium-238 laboratory control sample demonstrated an acceptable percent recovery.

ISOTOPIC THORIUM

Samples were prepared by removing a representative aliquot from each sample followed by mixed acid digestions as appropriate. Thorium was selectively extracted by ion exchange. Thorium was eluted, micro-precipitated and mounted on micro-porous filter media. Sample activities were then determined by alpha spectroscopy using energy specific regions of interest for Thorium-228, Thorium-230 and Thorium-232. Chemical recovery was determined by the use of a Thorium-229 tracer. Activity of the Thorium-229 tracer was determined by alpha spectroscopy using an energy specific region of interest.

Samples demonstrated background equivalent results for Thorium-228 and Thorium-232 activity. Samples demonstrated background equivalent to slightly positive results for Thorium-230 activity. Results for the Thorium-228, Thorium-230 and Thorium-232 method blank demonstrated background equivalent activity. Chemical recovery was acceptable for all samples. Results for the Thorium-228 and Thorium-230 replicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Thorium-232 replicate demonstrated a slightly high relative percent difference; however, normalized difference is within acceptable limits for the analytical technique. Results for the Thorium-228, Thorium-230 and Thorium-232 laboratory control sample demonstrated an acceptable percent recovery.

RADIUM-226

Samples were prepared by drying, pulverizing and homogenizing. Representative aliquots were removed and samples were digested using mixed acids. Radium-226 was precipitated as Radium sulfate using elemental Barium and Lead as carriers. Sulfates were dissolved in alkaline EDTA. Radium-226 was selectively precipitated from slightly acidic EDTA. Precipitates were then mounted by semi-micro-precipitations onto micro-porous filters. Samples were counted by alpha spectroscopy using an energy specific region of interest for Radium-226. Chemical recovery was calculated by the use of a Barium-133 tracer, which was determined by HPGe gamma spectroscopy.

Samples demonstrated near background equivalent results for Radium-226 activity. Results for the Radium-226 method blank demonstrated background equivalent activity. Chemical recovery was acceptable for all samples. Results for the Radium-226 replicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Radium-226 laboratory control sample demonstrated an acceptable percent recovery.

CERTIFICATION OF ACCURACY

I certify that this data report is in compliance with the terms and conditions of the Purchase Order, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the cognizant project manager or his/her designee to be accurate as verified by the following signature.

M.R. McDougall Laboratory Manager

Date: 9/14/2005

SECTION IV ANALYTICAL RESULTS SUMMARY

Steve Lang Miss. Dept. of Nat. Resources 917 Hwy. 67 North, #104 Florissant, MO 63031

Affiliation: ALPD/HWP/FFS SDG: 0508094 Matrix: Soil

Final Report of Analysis Date Reported: 9/14/2005 Page 1 of 5

Qualifer			רכרכרככ	Þ
Unit	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g
MDA	0.21 0.10 0.07 0.09 0.11 0.08	0.21 0.10 0.07 0.09 0.11 0.08	0.16 0.18 0.10 0.05 0.05	0.08 0.10 0.09 0.09 0.10 0.06
Error	0.47 0.17 0.14 0.29 0.01	1.34 0.93 1.03 0.91 1.35 0.17	0.06 0.02 0.16 0.10 0.07	0.34 0.19 0.36 0.23 0.08 0.08
Result	10.28 4.74 5.33 4.74 7.98 0.36	10.08 5.06 5.72 4.95 8.02 0.37	0.03 -0.02 0.21 0.08 0.18 0.07	0.98 0.49 1.40 0.71 0.07 0.07
Method	EPA 903.0 Modified EML Th-01 Modified EML Th-01 Modified EML U-02 Modified EML U-02 Modified EML U-02 Modified	EPA 903.0 Modified EML Th-01 Modified EML Th-01 Modified EML Th-01 Modified EML U-02 Modified EML U-02 Modified EML U-02 Modified	EPA 903.0 Modified EML Th-01 Modified EML Th-01 Modified EML Th-01 Modified EML U-02 Modified EML U-02 Modified	EPA 903.0 Modified EML Th-01 Modified EML Th-01 Modified EML Th-02 Modified EML U-02 Modified EML U-02 Modified
Analyte	Radium-226 Thorium-228 Thorium-230 Thorium-232 Uranium-234 Uranium-235	Radium-226 Thorium-228 Thorium-230 Thorium-232 Uranium-234 Uranium-235	Radium-226 Thorium-228 Thorium-230 Thorium-234 Uranium-235 Uranium-238	Radium-226 Thorium-228 Thorium-230 Thorium-232 Uranium-235 Uranium-235
Date Analyzed	08/27/05 09/02/05 09/02/05 09/02/05 09/02/05	08/27/05 09/02/05 09/02/05 09/02/05 09/02/05	08/27/05 09/02/05 09/02/05 09/02/05 09/02/05	09/02/05 09/02/05 09/02/05 09/02/05 09/02/05
Lab ID	0508094-01 0508094-01 0508094-01 0508094-01 0508094-01	0508094-01 0508094-01 0508094-01 0508094-01 0508094-01	0508094-02 0508094-02 0508094-02 0508094-02 0508094-02 0508094-02	0508094-03 0508094-03 0508094-03 0508094-03 0508094-03
Client ID	KNOWN KNOWN KNOWN KNOWN KNOWN KNOWN	SPIKE SPIKE SPIKE SPIKE SPIKE SPIKE	BLANK BLANK BLANK BLANK BLANK BLANK BLANK	VPSCR081705SL01 VPSCR081705SL01 VPSCR081705SL01 VPSCR081705SL01 VPSCR081705SL01 VPSCR081705SL01

Oak Ridge Laboratory

Affiliation: ALPD/HWP/FFS

SDG: 0508094 Matrix: Soil

Final Report of Analysis	Date Reported: 9/14/2005	Page 2 of 5

Qualifer	٦	っっ	Þ
Unit	0/10 0/10 0/10 0/10 0/10 0/10 0/10		PC//g PC//g PC//g PC//g PC//g PC//g
MDA	0.20 0.10 0.12 0.05 0.07 0.04	0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.21 0.13 0.11 0.05 0.04
Error	0.39 0.22 0.38 0.28 0.25 0.08	0.36 0.20 0.54 0.17 0.09 0.26 0.14 0.38 0.08 0.08	0.34 0.29 0.43 0.28 0.01 0.05
Result	1.18 0.59 1.39 0.88 0.88 0.10	1.01 0.54 0.42 0.97 0.94 0.94 1.37 0.29 1.46 0.38 0.091 0.08	0.87 0.74 1.40 0.71 0.04 0.04
Method	EPA 903.0 Modified EML Th-01 Modified EML Th-01 Modified EML Th-02 Modified EML U-02 Modified EML U-02 Modified	EPA 903.0 Modified EML Th-01 Modified EML Th-01 Modified EML U-02 Modified EML U-02 Modified EML U-02 Modified EML Th-01 Modified EML Th-01 Modified EML Th-01 Modified EML Th-02 Modified EML U-02 Modified	EPA 903.0 Modified EML Th-01 Modified EML Th-01 Modified EML Th-01 Modified EML U-02 Modified EML U-02 Modified
Analyte	Radium-226 Thorium-228 Thorium-230 Thorium-232 Uranium-235 Uranium-235	Radium-226 Thorium-228 Thorium-230 Uranium-234 Uranium-235 Uranium-238 Thorium-228 Thorium-228 Thorium-230 Uranium-232 Uranium-232 Uranium-235 Uranium-235	Radium-226 Thorium-228 Thorium-230 Thorium-232 Uranium-235 Uranium-235
Date Analyzed	08/27/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05	08/27/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05	08/27/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05
Lab ID	0508094-04 0508094-04 0508094-04 0508094-04 0508094-04 0508094-04	0508094-05 0508094-05 0508094-05 0508094-05 0508094-05 0508094-06 0508094-06 0508094-06 0508094-06 0508094-06 0508094-06	0508094-07 0508094-07 0508094-07 0508094-07 0508094-07 0508094-07
Client ID	VPSCR081705SL01 VPSCR081705SL01 VPSCR081705SL01 VPSCR081705SL01 VPSCR081705SL01 VPSCR081705SL01	VPSCR081705SL02 VPSCR081705SL02 VPSCR081705SL02 VPSCR081705SL02 VPSCR081705SL02 VPSCR081705SL02 VPSCR081705SL03	VPSCR081705SL04 VPSCR081705SL04 VPSCR081705SL04 VPSCR081705SL04 VPSCR081705SL04 VPSCR081705SL04 VPSCR081705SL04

Affiliation: ALPD/HWP/FFS SDG: 0508094 Matrix: Soil

Final Report of Analysis Date Reported: 9/14/2005 Page 3 of 5

Qualifer	٦	5 5	Э
Unit	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	PCi/g PCi/g PCi/g PCi/g PCi/g PCi/g PCi/g PCi/g PCi/g	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g
MDA	0.17 0.07 0.07 0.06 0.06 0.05	0.15 0.09 0.05 0.09 0.09 0.09 0.09 0.09	0.07 0.09 0.09 0.09 0.06 0.05
Error	0.40 0.19 0.46 0.22 0.09 0.09	0.46 0.39 0.39 0.25 0.05 0.22 0.25 0.35 0.24 0.29	0.27 0.30 0.24 0.61 0.25 0.05
Result	1.22 0.47 1.86 0.61 0.10 0.84	1.73 1.27 3.75 1.30 0.04 0.75 0.75 1.38 0.82 1.33 0.76 0.76	0.92 0.88 0.79 0.85 1.03 1.03
Method	EPA 903.0 Modified EML Th-01 Modified EML Th-01 Modified EML U-02 Modified EML U-02 Modified EML U-02 Modified		EML U-02 Modified EPA 903.0 Modified EML Th-01 Modified EML Th-01 Modified EML U-02 Modified EML U-02 Modified
Analyte	Radium-226 Thorium-228 Thorium-230 Thorium-232 Uranium-235 Uranium-235	Radium-226 Thorium-228 Thorium-230 Uranium-234 Uranium-235 Uranium-236 Thorium-226 Thorium-230 Thorium-230 Uranium-230 Uranium-230 Uranium-230	Uranium-238 Radium-226 Thorium-230 Thorium-232 Uranium-234 Uranium-235
Date Analyzed	08/27/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05	09/02/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05	09/02/05 08/27/05 09/02/05 09/02/05 09/02/05 09/02/05
Lab ID	0508094-08 0508094-08 0508094-08 0508094-08 0508094-08 0508094-08	0508094-09 0508094-09 0508094-09 0508094-09 0508094-09 0508094-10 0508094-10 0508094-10 0508094-10 0508094-10	0508094-10 0508094-11 0508094-11 0508094-11 0508094-11 0508094-11
Client ID	VPSCR081705SL05 VPSCR081705SL05 VPSCR081705SL05 VPSCR081705SL05 VPSCR081705SL05 VPSCR081705SL05	VPSCR081705SL06 VPSCR081705SL06 VPSCR081705SL06 VPSCR081705SL06 VPSCR081705SL06 VPSCR081705SL07	VPSCR081705SL07 VPSCR081705SL08 VPSCR081705SL08 VPSCR081705SL08 VPSCR081705SL08 VPSCR081705SL08

Oak Ridge Laboratory

Affiliation: ALPD/HWP/FFS SDG: 0508094 Matrix: Soil

Final Report of Analysis Date Reported: 9/14/2005 Page 4 of 5

Qualifer	Þ)	Þ	Þ
Unit	PCi/g PCi/g PCi/g PCi/g PCi/g	p Ci/g p Ci/g p Ci/g p Ci/g	pCi/g pCi/g pCi/g pCi/g	pCi/g pCi/g pCi/g pCi/g pCi/g	pCi/g pCi/g pCi/g
MDA	0.00 0.00 0.00 0.00 0.00	0.00 0.20 0.08 0.07	0.05 0.04 0.07 0.17	2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.08 0.11 0.12 0.13
Error	0.36 0.32 0.48 0.25 0.06	0.39 0.31 0.35 0.35	0.07 0.27 0.35 0.18	0.23 0.05 0.05 0.23 0.33 0.33	0.30 0.30 0.30
Result	1.24 1.07 1.98 0.74 0.06	0.71 1.19 1.06 3.68 1.28	0.07 0.98 1.11 0.38	0.51 0.03 0.03 0.04 0.42	0.50 1.03 0.10 0.85
Method	EPA 903.0 Modified EML Th-01 Modified EML Th-01 Modified EML Th-01 Modified EML U-02 Modified				EML In-01 Modified EML U-02 Modified EML U-02 Modified EML U-02 Modified
Analyte	Radium-226 Thorium-228 Thorium-230 Thorium-232 Uranium-235	Uranium-238 Radium-226 Thorium-228 Thorium-230 Thorium-232 Uranium-234	Uranium-235 Uranium-238 Radium-226 Thorium-228	Thorium-232 Uranium-234 Uranium-235 Uranium-238 Radium-226 Thorium-228	I norlum-232 Uranium-234 Uranium-235 Uranium-238
Date Analyzed	08/27/05 09/02/05 09/02/05 09/02/05 09/02/05	09/02/05 08/27/05 09/02/05 09/02/05 09/02/05	09/02/05 09/02/05 09/02/05 09/02/05	09/02/05 09/02/05 09/02/05 09/02/05 09/02/05 09/02/05	09/02/05 09/02/05 09/02/05 09/02/05
Tab ID	0508094-12 0508094-12 0508094-12 0508094-12 0508094-12	0508094-12 0508094-13 0508094-13 0508094-13 0508094-13	0508094-13 0508094-14 0508094-14 0508094-14	0508094-14 0508094-14 0508094-14 0508094-15 0508094-15 0508094-15	0508094-15 0508094-15 0508094-15
Client ID	VPSCR081705SL09 VPSCR081705SL09 VPSCR081705SL09 VPSCR081705SL09 VPSCR081705SL09	VPSCR081705SL09 VPSCR081705SL10 VPSCR081705SL10 VPSCR081705SL10 VPSCR081705SL10 VPSCR081705SL10	VPSCR081705SL10 VPSCR081705SL10 VPSCR081705SL11 VPSCR081705SL11	VPSCR081705SL11 VPSCR081705SL11 VPSCR081705SL11 VPSCR081705SL11 VPSCR081705SL12 VPSCR081705SL12 VPSCR081705SL12	VPSCR081705SL12 VPSCR081705SL12 VPSCR081705SL12 VPSCR081705SL12

Oak Ridge Laboratory

Steve Lang Miss. Dept. of Nat. Resources 917 Hwy. 67 North, #104 Florissant, MO 63031

Affiliation: ALPD/HWP/FFS SDG: 0508094 Matrix: Soil

Final Report of Analysis Date Reported: 9/14/2005 Page 5 of 5

	Qualifer						⊃								
	Unit	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g
	MDA	0.18	0.17	0.12	0.14	90.0	0.04	90.0	0.29	0.12	0.07	0.03	0.07	0.04	0.06
	Error	0.39	0.30	1.14	0.35	0.24	0.03	0.26	0.51	0.29	0.84	0.28	0.27	0.11	0.25
	Result	1.19	0.86	5.41	1.12	0.85	0.02	0.94	1.85	1.05	4.41	1.01	0.97	0.16	06.0
	Method	EPA 903.0 Modified	EML Th-01 Modified	EML Th-01 Modified	EML Th-01 Modified	EML U-02 Modified	EML U-02 Modified	EML U-02 Modified	EPA 903.0 Modified	EML Th-01 Modified	EML Th-01 Modified	EML Th-01 Modified	EML U-02 Modified	EML U-02 Modified	EML U-02 Modified
,	Analyte	Radium-226	Thorium-228	Thorium-230	Thorium-232	Uranium-234	Uranium-235	Uranium-238	Radium-226	Thorium-228	Thorium-230	Thorium-232	Uranium-234	Uranium-235	Uranium-238
Date	Analyzed	08/27/05	09/02/05	09/02/05	09/02/05	09/02/05	09/02/05	09/02/05	08/27/05	09/02/05	09/02/05	09/02/05	09/02/05	09/02/05	09/02/05
	Lab ID	0508094-16	0508094-16	0508094-16	0508094-16	0508094-16	0508094-16	0508094-16	0508094-17	0508094-17	0508094-17	0508094-17	0508094-17	0508094-17	0508094-17
:	Client ID	VPSCR081705SL13	VPSCR081705SL13	VPSCR081705SL13	VPSCR081705SL13	VPSCR081705SL13	VPSCR081705SL13	VPSCR081705SL13	VPSCR081705SL14	VPSCR081705SL14	VPSCR081705SL14	VPSCR081705SL14	VPSCR081705SL14	VPSCR081705SL14	VPSCR081705SL14

SECTION V ANALYTICAL STANDARD

QA/QC REVIEWED CERTIFICATE OF CALIBRATION Date 1/16/95 Initials ALPHA STANDARD SOLUTION

Radionuclide:

U-238NAT

Customer:

TMA EBERLINE

Half Life:

 $(4.468 \pm 0.005) \times 10^9$ years

P.O.No.:

OR2778

Catalog No.:

7338

Reference Date:

January 1 1995

Source No.:

479-50

Contained Radioactivity: (Total U) 8.016 µCi

Refer to attached technical data sheet

12:00 PST.

Contained Radioactivity: (Total U) 297 kBq

Description of Solution

a. Mass of solution:

65.2896 g in a 50 ml flame sealed ampoule

b. Chemical form:

Uranyl Nitrate in H2O None

c. Carrier content:

Approximately 1.3202

g/ml @ 20°C.

d. Density: Radioimpurities

Radioactive Daughters

Refer to attached technical data sheet

Radionuclide Concentration

(Total U) 0.1228

μCi/g

Method of Calibration

Activity calculations are based upon known specific activity and mass.

Uncertainty of Measurement

a. Systematic uncertainty in instrument calibration:

+3.0%

b. Random uncertainty in assay:

 $\pm 0.0\%$

c. Random uncertainty in weighing(s):

+2.0%

d. Total uncertainty at the 99% confidence level:

±3.6%

NIST Traceability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Leak Test(s)

See reverse side for Leak Test(s) applied to this source.

Notes

1. Nuclear data were taken from "Table of Radioactive Isotopes", edited by Virginia S. Shirley, 1986.

2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (As in NRC Regulatory Guide 4.15).

ISOTOPE PRODUCTS LABORATORIES 3017 N. San Fernando Blvd. BURBANK, CALIFORNIA 91504

818 • 843 • 7000 FAX 818 • 843 • 6168

QUALITY CONTROL PROGRAM

MP-009

Rev.8; 11/01/03

Title: Radioactive Reference Standards Solutions & Records **EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE SOLUTIONS** PRIMARY DILUTION RECERTIFICATION MP 009 1/4/2005 0:00 **CURRENT DATE SOLUTION #** U-8 SOLUTION REFERENCE # IPL 479-50 Half Life, Days Principal Radionuclide Half Life, Years 1.632E+12 4.468E+09 1/1/1995 0:00 Reference Date Radionuclide Certified Activity 8.016E+00 µCi μCi per gram **Certified Concentration** Ampoule /Solution Gross 97.6400 Weight, Grams 32.5020 Weight, Grams **Empty Ampoule** 65.1380 Weight, Grams **Solution Net** 8.0160 μCi **Total Activity in Ampoule Chemical Composition of Standard Solution** Uranyl nitrate in dilute HNQ 1M HNO₃ **Dilution Solvent Used** Dilution Instructions: milliliters 1000.00 Dilute to a volume of 1.780E+07 dpm at the date listed above 8.0160 μCi Which Equals Certified Total Activity of This activity concentration is based on the original And after dilution the activity of this solution is 1.77955E+04 dpm/mleference date listed above. All activities are corrected to the date and time of analysis by the laboratory data processing software. Expiration Date: January 4, 2006 1/18/2005 11:55 Date: Recertified By 1/18/2005 11:55 Date: Verified & Approved By 1/18/2005 11:55 Date: QC Approval

QUALITY CONTROL PROGRAM

MP-009

Rev.8; 11/01/03

Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE STANDARD SOLUTIONS

IVAL	SECONDARY DILUTION RECE	RTIFICATION		
	MP-009	Date	1/4/2005 0:00	
Solution	Reference # IPL 479-50	Solution #	U-8a	
Principal Radionuclide	Half Life, Years	H	alf Life, Days	
234, 235. 238	4.468E+09	Γ	1.632E+12	
Radionuclide of Interest Parent Solution Conc.	234, 235, 238 _U 1.7796E+04 dpm/ml	Reference Date	1/1/1995 0:00	
Chemical Con Uranly Nitrate	nposition of Standard Solution in 1M HNO ₃			
Dilution Instructions:	Dilution SECONDARY VOLUMETRIC I		M HNO ₃	
l				
Vol. Parent Solution:	4.0000 ml		7.1182E+01 dpm/ml	
Total Activity:	•	Activity Concentration:	7.1182E+01] up in/ini	
Final Volume:	1000.00 ml			
NOTES:	refe com	activity concentration is rence date listed above. ected to the date and ting gratory data processing:	All activities are ne of analysis by the	
Isotopic Distribution as:		The process of the pr		
	: 71.182 dpm/ml X 0.48249 = 34.345 dpm/ml : 71.182 dpm/ml X 0.0225 = 1.602 dpm/ml			
	: 71.182 dpm/ml X 0.49501 = 35.236 dpm/ml			
Alf values +/- 3.6%		Expiration Date:	January 4, 2006	
		Expiration bate.	January 4, 2000	
Isotopic ratios from manufacturer's	data sheet			
Recertified By Verified & Approved By	(duay)	Date: _ Date: _	1/18/2005 11:54 i c (12) 1/48/2005 11:54	
QC Approval	Mut aleve	Date:	1/18/2005 11:54	

RECORD COPY

Tracer Solution for Environmental Analysis & Disequilibrium Studies

Product Description & Measurement Certificate

Description

Principal radionuclide:

uranium 232 (U-232)

Product code: UDP10050

Daughter Nuclide:

Th-228

Batch Number: 92/232/67

Measurement

Reference date:

Radioactive concentration U-232

01 March 2000

which is equivalent to

6.739E+03 becquerels per gram of solution 1.821E-01 microcuries per gram of solution

Mass of solution

5.356 grants

Volume of solution Total activity of U-232

5.035 millilitres 3.61E+04 becquerels

which is equivalent to

9.76E-01 microcuries

Accuracy

Method of measurement (see reverse of this certificate) Random uncertainty is: ± 0.7%

Systematic uncertainty: ± 0.5%

Overall uncertainty in the radioactive concentration quoted above: ± 1.7%

Overall uncertainty is defined on the reverse of this certificate.

Radionuclidic Purity

Any radioactive impurities measured are listed below, expressed as percentages

of the activity of the principle radionuclide at the reference date .

Th-228 and daughter activity removed 2 Feb 2000

U-232 daughters activity will increase with time. By alpha 88% U-232, 12% daughters on 1/3/00

Isotopic Purity

The isotopic composition, expressed as atom per cent at the reference date.

Not measured

Chemical Composition Calculated weight of U-232, 4.42E-08 grams, as 2M HNO3 solution in a flame sealed glass vial.

This Tracer solution has been produced 'carrier free'.

Physical Data

Recommended half life of uranium 232: 6.980E+01 years

Principle energies of alpha emissions (MeV): 5.263 31.7%, 5.320 68.0%

Branching ratio for alpha emission: 100%

Calculated specific activity of uranium 232: 8.167E+05 Bq per microgram U-232.

Remarks

For safety information and notes to ensure correct usage by all persons handling this radioactive Tracer

solution please read the instructions accompanying the package.

AEA Technology operates a quality management system which has been independently audited and

approved to ISO 9001.

Approved Signatory

Project Ref. AE2315

Roger Wiltshire

Prepared and characterised in the UK, for world wide distribution by Isotrak, AEA Technology, QSA.

QUALITY CONTROL PROGRAM

MP-009

Rev.8; 11/01/03
Title: Radioactive Reference Standards Solutions & Records

	EBERLINE SERVICES - OAK RADIOACTIVE REFERE PRIMARY DILUTION RE MP 009	NCE SOLUTIONS	ORY
		CURRENT DATE	1/4/2005 0:00
SOLUTION RE	FERENCE # AEA/Amersham 92/232/67	SOLUTION #	U-10
Principal Radionuclide	Half Life, Years		Half Life, Days
²³² U	7.200E+01		2.630E+04
Radionuclide Certified Activity	²³² U 9.760E-01 μ C i	Reference Date	3/1/2000 0:00
Certified Concentration	μCi per gram		
	Ampoule /Solution Gross	Weight, Grams	
	Empty Ampoule	Weight, Grams	
	Solution Net	Weight, Grams	
	Total Activity in Ampoule 0.976	<u>Ս</u> μCi	
	nposition of Standard Solution	-	
²³² U(NO ₃) ₆ in 2	M HNO ₃		
Dilution Instructions:	Dilution S	olvent Used	2M HNO ₃
Dilute to	a volume of 1000.00 milliliters		
Certified Total Activity of	0.9760 μCi Which Equals		dpm at the date listed above
And after dilution th	e activity of this solution is 2.167E+0	3 dpm/ml reference to the d	tivity concentration is based on the original ce date listed above. All activities are corrected late and time of analysis by the laboratory data sing software.
_		Expiration Date	: January 4, 2006
Recertified By	Ser : 14	Date	: 1/18/2005 10:37
Verified & Approved By	Caleny D	Date	: 1/ 18/ 2005 10:37
QC Approval	Colema alane	Date	1/18/2005 10:37

Rev.8; 11/01/03

Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE STANDARD SOLUTIONS

	SECONDARY DILUTION RECER	IFICATION	
	MP-009	Date	1/4/2005 0:00
Solution	Reference # AEA/Amersham 92/232/67	Solution #	U-10a
Principal Radionuclide	Half Life, Years	ŀ	laif Life, Days
²³² U	7.200E+01	Γ	2.630E+04
Radionuclide of Interest Parent Solution Conc.	232 _U 2.167E+03 dpm/ml	Reference Date	3/1/2000 0:00
Chamical Car	nnosition of Standard Solution		
	nposition of Standard Solution	1	
²³² U(NO ₃) ₆ in 2	M TINU3	j	
Dilution Instructions: Vol. Parent Solution: Total Activity:	SECONDARY VOLUMETRIC DIL	_	2M HNO ₃ 2.1670E+01 dpm/ml
Final Volume:	1000.00 ml		
NOTES:	This acresses correct	ce date listed above.	ne of analysis by the
		Expiration Date:	January 4, 2006
Recertified By	Mr. July	Date:	1/18/2005 10:37
Verified & Approved By	(Diarry)	_ Date:	1/18/2005 10:37
QC Approval	Muttalane	Date:	1/18/2005 10:37

CERTIFICATE OF CALIBRATION ALPHA STANDARD SOLUTION

Radionuclide:

Th-232

Customer:

TMA EBERLINE

Half Life:

 (1.405 ± 0.006) x 10^10 years

P.O.No.:

VH1632

Catalog No.:

7232

Reference Date:

November 1 1993

12:00 PST.

Source No.:

435-104-2

Contained Radioactivity: Contained Radioactivity: (Th-232) 0.0933

Description of Solution

a. Mass of solution:

11.9712 g (in a 10 ml flame sealed ampoule)

3.45 (Th-232)

kBq.

b. Chemical form:

Th(NO3)4 in water

c. Carrier content:

None added

g/ml @ 20°C.

d. Density:

Approx. 1.21

Radioimpurities

None detected (other than daughters).

Radioactive Daughters

Ra-228, Ac-228, Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Po-212, Tl-208

Radionuclide Concentration

(Th-232) 0.00779

μCi/g.

Method of Calibration

Activity calculations are based upon known specific activity and mass.

Uncertainty of Measurement

a. Systematic uncertainty in instrument calibration:

+3.0%

b. Random uncertainty in assay:

+0.0%

c. Random uncertainty in weighing(s):

±2.0%

d. Total uncertainty at the 99% confidence level:

+3.6%

NIST Traceability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Leak Test(s)

See reverse side for Leak Test(s) applied to this source.

Notes

1. Nuclear data were taken from "Table of Radioactive Isotopes", edited by Virginia S. Shirley, 1986.

2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (As in NRC Regulatory Guide 4.15).

OUALITY CONTROL

Nov. 8, 1993
Date Signed

ISOTOPE PRODUCTS LABORATORIES 1800 North Keystone Street

Burbank, California 91504

(818) 843 - 7000

QUALITY CONTROL PROGRAM

MP-009

Rev.8; 1/10/03 Title: Radioactive Reference Standards Solutions & Records													
EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE SOLUTIONS PRIMARY DILUTION RECERTIFICATION													
							MP 009						
									CURRENT DATE	1/13/2005 0:00			
SOLUTION REFE	RENCE # IPL 435-104-2	SOLUTION #	Th-8										
incipal Radionuclide	Half Life, Years	H	alf Life, Days										
² Th, ²²⁸ Th	1.405E+10		5.132E+12										
Radionuclide 23	^{2 & 228} Th	Reference Date	11/1/1993 0:00										
	.330E-02 μ Ci												
Certified Concentration	μCi per gram												
Ampoule /Solution Gross 18.8415 Weight, Grams													
,		6.9296 Weight, Grams											
		1.9119 Weight, Grams											
. т		0.0933 μCi											
Chemical Composition of Standard Solution													
Th(NO ₃) ₄ in H2O													
ilution Instructions:	Dilu	tion Solvent Used	% Nitric Acid										
		•••											
Dilute to a	olume of 1000.00 milli	liters											
Certified Total Activity of	0.0933 μCi Which E	quals 2.071E+05	ipm at the date listed above										
		This police	ity concentration is based on the original										
And after dilution the activity of this solution is 2.0/1E+02 opm/mi reference date listed above. All activities are corrected													
			e and time of analysis by the laboratory da og software.										
		processin	g gontagio.										
		Expiration Date:	January 13, 2006										
	•												
	A.t.	Data	1/13/2005 0:00										
Recertified By	No S	Date:	18 CHO										
Manifest O. Assessed Dec	(1 Xanh	Date:	1/43/2005 0:00										
Verified & Approved By	- Check												
00 A	- /// A 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Date:	1/13/2005 0:00										
(.R : ADDIOVAL													
QC Approval	yma wee												

QUALITY CONTROL PROGRAM

MP-009

Rev.8; 1/10/03

Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE STANDARD SOLUTIONS

SECONDARY DILUTION RECERTIFICATION					
	MP-009	Date	1/13/2005 0:00		
Solution	Reference # IPL 435-104-2	Solution #	Th-8b		
Principal Radionuclide	Half Life, Years	Ha	alf Life, Days		
228 & 232Th	1.405E+10		5.132E+12		
Radionuclide of Interest Parent Solution Conc.	228 & 232Th 2.07E+02 dpm/ml	Reference Date	11/1/1993 0:00		
Chemical Con	nposition of Standard Solution				
Th(NO ₃) ₄ in 1%					
111/11-23/4 11 1 //					
Dilution Instructions:	Dilution	n Solvent Used	% Nitric Acid		
SECONDARY VOLUMETRIC DILUTION					
Vol. Parent Solution:	500.0000 mi				
Total Activity:	1.0355E+05 dpm Final A	ctivity Concentration:	1.0355E+02 dpm/ml		
Final Volume:	1000.00 ml				
NOTES:	This activity concentration is based on the original reference date listed above. All activities are corrected to the date and time of analysis by the laboratory data processing software.				
		Expiration Date:	January 13, 2006		
Recertified By	M. Com	Date:	1/13/2005 12:19		
Verified & Approved By	(Duy)	Date:	1/18/05		
QC Approval	aphi Valone	Date:	·		

Th-230 QA/QC REVIEWES ERTIFICATE OF CALIBRATIO TMA EBERLAND 1991

Radionuclide

Half Life:

 $(7.54 \pm 0.03) \times 10^{4} \text{ years}$

P.O.No.:

Catalog No.:

7230 388-116 Reference Date: Contained Radioactivity:

November 1 1991 1.036 12:00 PST

Source No.:

Description of Solution

5.0042

a. Mass of solution: b. Chemical form:

Th(NO3)4 in 0.1N HNO3

grams.

μCi.

c. Carrier content:

None added

1.0016

gram/ml @ 20°C.

Radioimpurities

d. Density:

See attached technical data sheet

Radioactive Daughters

See attached technical data sheet

Radionuclide Concentration

0.207

μCi/gram.

Method of Calibration

Weighed aliquots of the solution were assayed using a liquid scintillation counter.

Uncertainty of Measurement

a. Systematic uncertainty in instrument calibration:

+2.0%

b. Random uncertainty in assay:

+0.5%

c. Random uncertainty in weighing(s):

+0.2%

d. Total uncertainty at the 99% confidence level:

+2.7%

NIST Traceability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Notes

- 1. Nuclear data were taken from "Table of Isotopes", Seventh Edition, edited by Virginia S. Shirley.
- 2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay(and later NIST certification) of Standard Reference Materials. (As in NRC Regulatory Guide 4.15)

QUALITY CONTROL

ISOTOPE PRODUCTS LABORATORIES

1800 No. Keystone Street., Burbank, California 91504

(818) 843 - 7000

QUALITY CONTROL PROGRAM

MP-009

Rev.8; 11/01/03

Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY

RADIOACTIVE REFERENCE SOLUTIONS PRIMARY DILUTION RECERTIFICATION MP 009					
C	URRENT DATE	1/5/2005 0:00			
SOLUTION REFERENCE # IPL 388-116	SOLUTION #				
Principal Radionuclide Half Life, Years		Half Life, Days			
²³⁰ Th 7.540E+04		2.754E+07			
Radionuclide ²³⁰ Thorium Certified Activity 1.036E+00 μCi	Reference Date	11/1/1991 0:00			
Certified Concentration µCi per gram					
	Weight, Grams Weight, Grams	,			
Solution Net 4.6442	Weight, Grams				
Total Activity in Ampoule 1.0360	ıCi				
Chemical Composition of Standard Solution					
²³⁰ Th(NO ₃) ₄ in 0.1N HNO ₃					
Dilution Instructions: Dilution Solv	ent Used	0.1N HNO ₃			
Dilute to a volume of 1000.00 milliliters					
Certified Total Activity of 1.0360 µCi Which Equals 2.300E+06 dpm at the date listed above					
And after dilution the activity of this solution is 2.300E+03 dpm/ml And after dilution the activity of this solution is 2.300E+03 dpm/ml This activity concentration is based on the original reference date listed above. All activities are corrected to the date and time of analysis by the laboratory data processing software.					
	p				
	Expiration Date:	January 5, 2006			
N.		4400005 0.40			
Recertified By	Date	,			
Verified & Approved By	Date	: 1/9/05			
QC Approval Mula Calaman	Date				

QUALITY CONTROL PROGRAM MP-009

	_			
Rev.	8:	11	/01	/03

Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE STANDARD SOLUTIONS						
SECONDARY DILUTION RECERTIFICATION MP-009 Date 1/5/2005 0:00						
Solution F	Reference # IPL 388-116	Solution #	Th-1b			
Principal Radionuclide ²³⁰ Th	Half Life, Years 7.540E+04		Half Life, Days 2.754E+07			
	2.30E+03 dpm/ml	Reference Date	11/1/1991 0:00			
Chemical Com ²³⁰ Th(NO ₃) ₄ in 0.	position of Standard Solution 1N HNO ₃					
Dilution Instructions:	Dilution S	Solvent Used	0.1N HNO₃			
	SECONDARY VOLUMETRIC DIL	LUTION				
Vol. Parent Solution: Total Activity: Final Volume:	1000.00 ml	tivity Concentration ctivity concentratio	n is based on the c	original e		
NOTES:	correc	cted to the date and atory data processing	time of analysis by	y the		
		Expiration Date	e: January 5, 2006	3		
Recertified By	Jul - Jul	Dat	e: <u>1/18/2005 0:0</u>	0		
Verified & Approved By	(Duarcy	Dat	e: 1/19/05	_		
QC Approval	Columbialana	Dat	e: <u>\//9/05</u>			

24937 Avenue Tibbitts Valencia, California 91355

Tel 661:309:1010

An Eckert & Ziegler Company

Fax 661-257-8303

CERTIFICATE OF CALIBRATION ALPHA STANDARD SOLUTION

Radionuclide:

Half-life:

Th-229

7229

Catalog No.: Source No.:

7340 ± 160 years

867-54

Customer:

(Th-229 only)

EBERLINE SERVICES

P.O. No.:

Reference Date: Contained Radioactivity:

00009633 15-Jan-02 12:00 PST

1.013

μCi 37.48

kBq

Physical Description:

A. Mass of solution:

5.0147 g in 5 mL flame-sealed ampoule

B. Chemical form:

 $Th(NO_3)_4$ in 0.1M HNO₃

C. Carrier content:

10µg Th/mL

D. Density:

1.0016 g/mL @ 20°C.

Radioimpurities:

None detected (daughters in equilibrium)

Radionuclide Concentration:

0.2020

μCi/g,

7.474

kBq/g

Method of Calibration:

This source was prepared from a weighed aliquot of solution whose activity in µCi/g was determined using gamma ray spectrometry.

Peak energy used for integration:

193.5 keV

Branching ratio used:

0.0441 gammas per decay

Uncertainty of Measurement:

A. Type A (random) uncertainty: B. Type B (systematic) uncertainty: C. Uncertainty in aliquot weighing:

0.7 % 3.0 %

D. Total uncertainty at the 99% confidence level:

0.0 % 3.1 %

Notes:

- See reverse side for leak test(s) performed on this source.
- IPL participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (As in NRC Regulatory Guide 4.15).
- Nuclear data was taken from IAEA Technical Report Series No. 261.
- This solution has a working life of 5 years.

18-	11 1	Klein	
Qu	ality	Control	

9- Jan-02
Date Signed

ISO 9001 CERTIFIED -

IPL Ref. No.:

867-54

Medical Imaging Laboratory

24937 Avenue Tibbitts Valencia, California 91355

Industrial Gauging Laboratory

1800 North Keystone Street Burbank, California 91504

QUALITY CONTROL PROGRAM MP-009

Rev	8	1/1	0/03

Title: Radioactive Reference Standards Solutions & Records						
EBERLINE SERVICES - 0/	AK RIDGE LABORAT	ORY				
RADIOACTIVE REFE	RENCE SOLUTIONS					
PRIMARY DILUTION						
MP (
	CURRENT DATE					
SOLUTION REFERENCE # IPL 867-54	SOLUTION #	Th-18				
Principal Radionuclide Half Life, Years		Half Life, Days				
²²⁹ Th 7.340E+03		2.681E+06				
220	Reference Date	1/15/2002 0:00				
Radionuclide 229Th	Reference Date	1713/2002 0.00				
Certified Activity 1.013E+00 μCi Certified Concentration μCi per gram						
Calified Colicentration						
, p	7752 Weight, Grams					
	7591 Weight, Grams					
	0161 Weight, Grams 0130 μCi					
Total Activity in Ampoule 1.	μοι					
Chemical Composition of Standard Solution						
²²⁹ Th(NO ₃) ₄ in 0.1M HNO ₃						
3/4						
		641411116				
Dilution Instructions: Dilutio	n Solvent Used	0.1 M HNO ₃				
Dilute to a volume of 1000.00 milliliters						
Dilute to a volume of 1000.00 millilite	ers .					
Certified Total Activity of 1.0130 μCi Which Equ	als 2.249E+06	dpm at the date liste	ed above			
	This ac	tivity concentration is base	d on the original			
And after dilution the activity of this solution is 2.249	E+03 dpm/ml referen	ce date listed above. All ac late and time of analysis by	tivities are corrected the laboratory data			
		late and time of analysis by sing software.	an invitority and			
	.	•	. معد			
	L. Me					
Expiration Date: January 12, 2008						
Recertified By	Date	e: 1/12/2005 7:53	3			
Receitified by		1 ,	-			
Verified & Approved By	Date	1/19/05	_			
		11,4105				
QC Approval (ghut faler	Date	: <u> </u>				

QUALITY CONTROL PROGRAM

MP-009

Rev.8; 1/10/03 Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY

RAI	RADIOACTIVE REFERENCE STANDARD SOLUTIONS				
	SECONDARY DILUTION RECE	RTIFICATION			
	MP-009	Date	1/12/2005 0:00		
Solution	Reference # IPL 867-54	Solution #	Th-18a		
Principal Radionuclide	Half Life, Years		laif Life, Days		
²²⁹ Th	7.340E+03	Γ	2.681E+06		
Radionuclide of Interest Parent Solution Conc.	229Th 2.25E+03 dpm/ml	Reference Date	1/15/2002 0:00		
Chemical Cor	nposition of Standard Solution				
TH(NO ₃) ₄ in 0.					
Dilution Instructions: Dilution Solvent Used 0.1M HNO ₃ SECONDARY VOLUMETRIC DILUTION					
V-1 D-1-40-1-6-1-6-1	40,0000				
Vol. Parent Solution: Total Activity:	10.0000 ml 2.2490E+04 dpm Final A	ctivity Concentration:	2.2490E+01 dpm/ml		
Final Volume:	1000.00 ml	curity concentrations.	2.24302.01 dp.1		
NOTES:	This refer corre	activity concentration is activity concentration is sense date listed above ected to the date and tire ratory data processing	ne of analysis by the		
Expiration Date: January 12, 2006					
Recertified By	M	Date:	1/12/2005 7:53		
Verified & Approved By	(Dear)	Date: _	1/19/05		
QC Approval	Jun Valaren	Date:	1/19/05		

National Institute of Standards & Technology Certificate

Standard Reference Material 4251C Barium-133 Radioactivity Standard

This Standard Reference Material (SRM) consists of radioactive barium-133 chloride, non-radioactive barium chloride, and hydrochloric acid dissolved in 5 mL of distilled water. The solution is contained in a flame-sealed NIST borosilicate-glass ampoule. The SRM is intended for the calibration of ionization chambers and solid-state gamma-ray spectrometry systems.

Radiological Hazard

The SRM ampoule contains barium-133 with a total activity of approximately 2.5 MBq. Barium-133 decays by electron capture and during the decay process X-rays and gamma rays with energies from 4 to 400 keV are emitted. Most of these photons escape from the SRM ampoule and can represent a radiation hazard. Approximate unshielded dose rates at several distances (as of the reference time) are given in note [a]*. Appropriate shielding and/or distance should be used to minimize personnel exposure. The SRM should be used only by persons qualified to handle radioactive material.

Chemical Hazard

The SRM ampoule contains hydrochloric acid (HCl) with a concentration of 1 mole per liter of water. The solution is corrosive and represents a health hazard if it comes in contact with eyes or skin. If the ampoule is to be opened to transfer the solution, the recommended procedure is given on page 2. The ampoule should be opened only by persons qualified to handle both radioactive material and strong acid solution.

Storage and Handling

The SRM should be stored and used at a temperature between 5 and 65 °C. The solution in an unopened ampoule should remain stable and homogeneous until at least June 2004.

The ampoule (or any subsequent container) should always be clearly marked as containing radioactive material. If the ampoule is transported it should be packed, marked, labeled, and shipped in accordance with the applicable national, international, and carrier regulations. The solution in the ampoule is a dangerous good (hazardous material) both because of the radioactivity and because of the strong acid.

Preparation

This Standard Reference Material was prepared in the Physics Laboratory, Ionizing Radiation Division, Radioactivity Group, J.M.R. Hutchinson, Group Leader. The overall technical direction and physical measurements leading to certification were provided by L.L. Lucas of the Radioactivity Group and D.B. Golas, Nuclear Energy Institute Research Associate.

The support aspects involved in the preparation, certification, and issuance of this SRM were coordinated through the Standard Reference Materials Program by N.M. Trahey.

Gaithersburg, Maryland 20899 October 1994 Thomas E. Gills, Chief Standard Reference Materials Program

SRM 4251C, page 1 of 6

*Notes and references are on pages 5 and 6.

QUALITY CONTROL PROGRAM QCP-009

Rev.8; 11/10/03

Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE SOLUTIONS PRIMARY DILUTION RECERTIFICATION OCP 009-1

QCP 009-1					
CURRENT DATE 11/6/2004 0:00					
SOLUTION REFERENCE # NIST SRM4251C SOLUTION # Ba-6					
Principal Radionuclide Half Life, Years Half Life, Days					
1.048E+01 3.828E+03					
Radionuclide 133 Barium Reference Date 9/1/1993 0:00					
Certified Activity μCi					
Certified Concentration 1.318E+01 μCi per gram					
Ampoule /Solution Gross 9.3081 Weight, Grams					
Empty Ampoule 4.2582 Weight, Grams					
Solution Net 5.0499 Weight, Grams Total Activity in Ampoule 66.5577 μCi					
· · · · · · · · · · · · · · · · · · ·					
Chemical Composition of Standard Solution					
¹³³ BaCl ₂ in 1M HCl					
Dilution Instructions: Dilution Solvent Used 1M HCl					
Dilute to a volume of 1000.00 milliliters					
Certified Total Activity of 66.5577 µCi Which Equals 1.478E+08 dpm at the date listed above					
And after dilution the activity of this solution is 1.478E+05 dpm/ml This activity concentration is based on the original reference date listed above. All activities are correct					
And after dilution the activity of this solution is 1.4702-05 april/illi reference date listed above. All activities are correct to the date and time of analysis by the laboratory date					
processing software.					
Expiration Date: November 6, 2005					
Diluted By Date: 11/6/04					
Verified & Approved By 11/6/04					
QC Approval Quit Date: 11/6/04					
do Approvai					

QUALITY CONTROL PROGRAM QCP-009

Rev.8; 11/10/03 Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY				
RADIOACTIVE REFERENCE STANDARD SOLUTIONS SECONDARY DILUTION RECERTIFICATION				
	SECUNDART DILUTIC	n recertification	·	
-	QCP-009		Date 11/6/2004 0:00	
	Reference # NIST SRM425			
Principal Radionuclide	Half Life, Yea		Half Life, Days 3.828E+03	
Pa	1.048E+01	I	3.020⊑+∪3	
Radionuclide of Interest	¹³³ Ba	Reference	Date 9/1/1993 0:00	
Parent Solution Conc.	1.48E+05 dpm/ml			
Chamlasi O	anonition of Ctandard Calus	ion	•	
Chemical Con 133BaCl ₂ in 1M	nposition of Standard Solut HCI			
Daoig III 1M				
Dilution Instructions:		Dilution Solvent Used	1M HCI	
	SECONDARY VOLUM	IETRIC DILUTION		
Vol. Parent Solution:	25.0000 ml			
Total Activity:	3.6950E+06 dpm	Final Activity Concentra	ation: 3.6950E+03 dpm/ml	
Final Volume:	1000.00 ml		I	
			ration is based on the original	
NOTES:		reference date listed a	above. All activities are	
			and time of analysis by the	
		laboratory data proces	ssing sonware.	
		_		
		Expiration i	Date: November 6, 2005	
	Service of the servic			
	1.1		.	
Diluted By_	- IVI IV		Date: 11/6/04	
Verified & Approved By	Carth		Date:11/6/04	
QC Approval	Man To To	1/2-a	Date: 11/6/04	
	- Com & far			

CERTIFICATE OF CALIBRATIONA/QC REVIEWED ALPHA STANDARD SOLUTION

Radionuclide:

Ra-226

Customer:

TMA EBERLINE

Half Life:

 $1600 \pm 7 \text{ years}$

P.O.No.:

VH1888

Catalog No.:

7226

Reference Date:

February 1 1994

Source No.:

Contained Radioactivity: (Ra-226)

1.001 μCi.

453-26

Contained Radioactivity: (Ra-226)

37.0 kBq.

12:00 PST.

Description of Solution

a. Mass of solution:

5.1864 g (in a 5 ml Flame Sealed Ampoule)

b. Chemical form:

Ra(NO3)2 in 1 N HNO3

c. Carrier content:

None added 1.0318

g/ml @ 20°C.

d. Density: Radioimpurities

None detected(other than daughters)

Radioactive Daughters

Rn-222, Po-218, At-218, Pb-214, Bi-214, Po-214, Tl-210, Pb-210, Bi-210, Po-210 and Tl-206.

Radionuclide Concentration

(Ra-226) 0.1929

μCi/g.

Method of Calibration

Weighed aliquots of the solution were assayed using gamma spectrometry:

Energy peak(s) integrated under: 186

Branching ratio(s) used:

0.0351

gamma rays per decay.

Uncertainty of Measurement

a. Systematic uncertainty in instrument calibration:

+3.4%

b. Random uncertainty in assay:

 $\pm 3.1\%$

c. Random uncertainty in weighing(s):

+0.2%

d. Total uncertainty at the 99% confidence level:

+4.6%

NIST Traceability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Leak Test(s)

See reverse side for Leak Test(s) applied to this source.

Notes

1. Nuclear data were taken from "Table of Radioactive Isotopes", edited by Virginia S. Shirley, 1986.

2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (As in NRC Regulatory Guide 4.15).

QUALITY CONTROL

Feb. 3, 1994

Date Signed

ISOTOPE PRODUCTS LABORATORIES

1800 North Keystone Street Burbank, California 91504

(818) 843 - 7000

QUALITY CONTROL PROGRAM

MP 009

Rev.8; 11/01/03

Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK I					
RADIOACTIVE REFEREN					
PRIMARY DILUTION RE	CERTIFICATION				
MP 009					
	CURRENT DATE 1/3/2005 0:00				
SOLUTION REFERENCE # IPL 453-26	SOLUTION # Ra-5				
Principal Radionuclide Half Life, Years	Half Life, Days				
²²⁶ Radium 1.600E+03	5.844E+05				
2280 - 45	Reference Date 2/1/1994 0:00				
Radionuclide ²²⁶ Radium Certified Activity 1.001E+00 μCi	Reference Date 2/1/1004 0.00				
Certified Concentration µCi per gram					
Certified Concentration					
Ampoule /Solution Gross	Weight, Grams				
Empty Ampoule	Weight, Grams				
Solution Net	Weight, Grams				
Total Activity in Ampoule 1.0010	<u> Ս</u> արա				
Chemical Composition of Standard Solution					
²²⁸ Ra(NO ₃) ₂ in 1M HNO ₃	7				
	ANALINO				
Dilution Instructions: Dilution Sc	olvent Used 1M HNO ₃				
Dilute to a volume of 1000.00 milliliters					
Didte to a volume of 1000.00					
Certified Total Activity of 1.0010 µCi Which Equals	2.222E+06 dpm at the date listed above				
And after dilution the activity of this solution is 2.222E+0	This activity concentration is based on the original reference date listed above. All activities are corrected				
And after dilution the activity of this solution is 2.2222-40	to the date and time of analysis by the laboratory data				
	processing software.				
	Expiration Date: January 3, 2006				
Diluted By Date: 1/3/2005					
13/200					
Verified & Approved By (Charty	Date: 1/3/2005 24 C				
QC Approval Claux alamo	Date: 1/8/2005				
20,100					

QUALITY CONTROL PROGRAM

MP 009

Rev.8; 11/01/03

Title: Radioactive Reference Standards Solutions & Records

EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE STANDARD SOLUTIONS

RADIOACTIVE REFERENCE STANDARD SOLUTIONS SECONDARY DILUTION RECERTIFICATION							
MP 009 Date 1/3/2005 0:00							
Solution Reference #∏		Solution #	Ra-5b				
	alf Life, Years		lalf Life, Days				
²²⁶ Radium	1.600E+03	Γ	5.844E+05				
Radionuclide of Interest ²²⁶ Radium	pm/mi	Reference Date	2/1/1994 0:00				
Chemical Composition of Sta ²²⁶ Ra(NO ₃) ₂ in 1M HNO ₃	andard Solution		·				
Dilution Instructions:	Dilution Sc	olvent Used	M HNO ₃				
SECOND	ARY VOLUMETRIC DIL	JTION					
Vol. Parent Solution: 20.0000 n	nl						
Total Activity: 4.4440E+04		ity Concentration:	4.4440E+01 dpm/ml				
Final Volume: 1000.00 n			s based on the original				
		e date listed above.					
NOTES:		d to the date and tim ry data processing s	ne of analysis by the software.				
		Expiration Date:	January 3, 2006				
Diluted By	Sign	Date: _	1/3/2005 0:00				
Verified & Approved By	res	Date: _	1/3/2005 0:00				
QC Approval / lud	Jalane	Date: _	1 24/0 38355				

SECTION VI QUALITY CONTROL SAMPLE RESULTS SUMMARY

Printed: 9/2/2005 1:38 PM Page 1 of 2

	Missouri Dept. of Natural Resources
Client Name	t. of Natu
	uri Dept
	Misso
Aliquot Units	ס
Aliquo	
Activity Units	pCi
Activity	ğ
Run	_
Analysis	nniso
WO	05-08094

5.03E-01

3.60E+00

1.60E+00

U-8a

1.70E-01

3.70E-01

1.30E-02

3.62E-01

3.60%

100.00%

45.86%

102.09%

0.09

U-235

U-238

5.03E-01

3.60E+00

3.44E+01

U-8a

1.51E+00

8.43E+00

2.80E-01

7.78E+00

3.60%

100.00%

17.89%

108.40%

0.84

	Standard Added (g)			
	Standard Error %			
	Standard ACT (dpm)			
	Standard ID			
	Sample Aliquot			
	Sample TPU			
	Sample Result			
r Spike	Actual MS TPU			
Matrix	Actual MS Result			
	Expected MS Uncert			
	Expected MS Result			
	MS Actual % Rec			
	Normalized Difference			
	Analyte			
	Matrix Spike	Matrix Spike Normalized MS Actual Expected Expected Actual Actual Sample Sample Sample Standard Standard Standard Difference % Rec MS Result MS Uncert MS Result MS TPU Result TPU Aliquot ID ACT (dpm) Error %	Matrix Spike Normalized MS Actual Expected Expected Actual Actual Sample Sample Sample Standard Standard Standard Standard Standard Standard Error% Difference %Rec MS Result MS TPU Result TPU Aliquot ID ACT (dpm) Error%	Matrix Spike Normalized MS Actual Expected Expected Actual Actual Sample Sample Standard Standard Standard Standard Difference "Rec MS Result MS Uncert MS Result MS TPU Aliquot ID ACT (dpm) Error % Error %

	Rep	Replicate Sample	ample						OC	QC Summary	ary		
Analyte	Normalized Difference	RPD	Original Result	Original TPU	Replicate Result	Replicate TPU	LCS Relative Bias	TCS % R	TCS ND	MS%R	MS ND	Rep RPD	Rep ND
U-234	0.35	7.44	8.76E-01	2.57E-01	9.44E-01	2.71E-01	1.00	Ą	ş			S S	ş
U-235	0.41	27.20	9.73E-02	8.10E-02 7.40E-02	7.40E-02	7.53E-02	1.02	οχ	Š			N	Š
U-238	1.32	29.26	8.90E-01	2.59E-01	6.63E-01	2.16E-01	1.08	Š	ş	1 1 1 1		N	Ş

Printed: 9/2/2005 1:38 PM Page 2 of 2

Missouri Dept. of Natural Resources Aliquot Units D Activity Units pĊ Run OSINN 05-08094

Version

Printed: 9/2/2005 12:54 PM Page 1 of 2

	1 1			T	
nrces			Standard Added (g)	1.02E-01	5.03E-01
ral Resc			Standard Error	3.60E+00	2.70E+00
Olient Name Missouri Dept. of Natural Resources			Standard ACT (dpm)	Th-8b 1.04E+02	2.35E+01
uri Dept.			Standard ID	Th-8b	Th-1b
Misso			TPU	9.58E-01	1.07E+00
t Units			Result	4.74E+00 1.71E-01 5.06E+00 9.58E-01	5.72E+00
Aliquot Units		sample	Known Error	1.71E-01	1.44E-01
Activity Units pCi		aboratory control sample	Known	4.74E+00	5.33E+00
pCi		ratory C	Uncert. Expected	3.60%	2.70%
- Kun		Labo	LCS Expected	100.00%	100.00%
			TPU	18.93%	18.63%
Thiso Thiso			LCS Measured	106.76%	107.35%
			Normalized Difference	0.65	0.72
05-08094			Analyte	ТН-228	ТН-230

1		T	
	Standard Added (g)		
	Standard Error %		
	Standard ACT (dpm)		
	Standard ID		
	Sample Aliquot		
	Sample TPU		
	Sample Result		
Matrix Spike	Actual MS TPU		
Matrix	Actual MS Result		
	Expected MS Uncert		
	Expected MS Result		
	MS Actual % Rec		
	Normalized Difference		
	Analyte		

1.02E-01

1.04E+02 3.60E+00

Th-8b

9.39E-01

4.95E+00

1.71E-01

4.74E+00

3.60%

100.00%

18.98%

104.40%

0.43

TH-232

	Rep	Replicate Sample	ample						ac	QC Summary	ıry		
Analyte	Normalized Difference	RPD	Original Result	Original TPU	Replicate Result	Replicate TPU	LCS Relative Bias	LCS % R	TCS ND	MS%R	MS ND	Rep RPD	Rep ND
ТН-228	0.63	17.54	5.86E-01	2.25E-01	4.91E-01	1.88E-01	1.07	OK	Ą			ŏ	9 K
TH-230	0.04	0.79	1.39E+00	3.91E-01	1E-01 1.40E+00 3.66E-01	3.66E-01	1.07	οĶ	УO			Ϋ́O	9 X
TH-232	0.94	22.12	8.85E-01	2.88E-01	2.88E-01 7.09E-01 2.32E-01	2.32E-01	1.04	OK	ОК			<u>N</u>	Ą

Printed: 9/2/2005 12:54 PM Page 2 of 2

Printed: 8/29/2005 9:48 AM Page 1 of 2

	ses
Client Name	Missouri Dept. of Natural Resources
Aliquot Units	Ö
Activity Units	pCi
Run	_
Analysis	Ra226
MO	05-08094

	Standard Added (g)	5.16E-01		
=		10 5.1		
	Standard Error	4.60E+0		
	Standard ACT (dpm)	4.42E+01 4.60E+00		
	Standard ID	Ra-5b		
	TPU	1.42E+00		
- - - - - - - - - - -	Result	1.01E+01		
Sample	Known Error	1.03E+01 4.73E-01 1.01E+01 1.42E+00		
Laboratory Control Sample	Known	1.03E+01		
ratory (Uncert. Expected	4.60%		
Labo	LCS Expected	100.00%	managama , y =	
	TPU Measured	98.04% 14.13%	and the second	The state of the s
	LCS Measured	98.04%		
	Normalized Difference	0.27		
	Analyte	RA-226		

		!	
	Standard Added (g)		
-	Standard Error %		
	Standard ACT (dpm)		
	Standard ID		
	Sample Aliquot		
	Sample TPU		
	Sample Result		
Matrix Spike	Actual MS TPU		
Matrix	Actual MS Result		
	Expected MS Uncert	And Administration of the Control of	
	Expected MS Result		
	MS Actual % Rec		
	Normalized Difference		
	Analyte		

	Rep	licate S	Replicate Sample						OC	QC Summary	ary		
Analyte	Normalized Difference	RPD	Original Result	Original TPU	Replicate Result	Replicate TPU	LCS Relative Bias	LCS % R	TCS ND	MS % R	MS ND	Rep RPD	Rep ND
RA-226	0.74	18.31	1.18E+00	3.92E-01 9.79E-01 3.41E-01	9.79E-01	3.41E-01	86:0	ş	Ą			Ą	Ą
										-			

Version

Printed: 8/29/2005 9:48 AM Page 2 of 2

OM	Analysis	Run	Activity Units	Alianot Units	Client Name
70080 30	Ra226	~	DCi	٥	Missouri Dept. of Natural Resources
10000-00		-		5	
	LCS % Recovery				Replicate Sample RPD
130.00	•				
120.00 +				40.00	
110.00	-			90.00	
100.001	•			25.00 +	
90 96				20.00	⊢◆
S				15.00 +	⊣
3	1			10.00	
70.00	RA-226			5.00	
- Lower Error	79.31			00.00	
	116.76				KA-226
♦ %R	98.04 AO			Error	15.20
- Incr	100		ODIE POCO	O	18.31
- Mean	120				35
ON.	Normalized Difference				
					No Matrix Spike
3.50			-		
3.00					
2.50					
2.00	- And Approximation of the Control o		1		
1.50					
1.00					
0.50			And or see the second		
00 0					
7	REP ND	MS ND			
26 0	0.74	0.00			
IUCL 3	7	2			

Version

SECTION VII

LABORATORY TECHNICIAN'S NOTES & RUN LOGS

ISO-U NOTES

Oak Ridge Laboratory

601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com

Internal Work Order	05-08094
Analysis Code	UUISO
Run Number	1

#	Date	Dept	User	Notes
1	08/23/05 10:45	PREP	JBARNARD	ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN UNTIL NEAR DRY- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS

Demond SBUS Printed: 9/1/2005 5:03 PM

Work Order Analysis Notes

Oak Ridge Laboratory

601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com

Internal Work Order	05-08094
Analysis Code	UUISO
Run Number	1

#	Date	Dept	User	Notes
1	08/23/05 10:45	PREP	JBARNARD	ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN UNTIL NEAR DRY- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS
2	09/01/05 13:49	CHEM	BNEWTON	Used column separation technique to elute Uranium fraction (steps 12.2 to 12.2.7 in AP-005 rev. 9)
3	09/01/05 17:03	CHEM	BNEWTON	Filtered samples and sent to count room (steps 12.2.7 to 12.5.5 in AP-005 Rev. 9)
				Bolly Newton 9/105

957

Printed: 9/2/2005 6:40 AM Page 1 of 1

EBERLINE SERVICES		Internal	Work Order	
		05-0	08094	**************************************
	SERVICES	Analysis Cod	Run	
_	nts Used in an Analysis	UUIS	1	
Reagent ID	Reagent Name	Reagent Concentration	Analyst ID	Date Recorded
003144P	Hydrofluoric Acid	Reagent Grade	JBARNARD	8/23/2005
003250P	Nitric Acid	Reagent Grade	JBARNARD	8/23/2005
002930P	Perchloric Acid	Reagent Grade	JBARNARD	8/23/2005
000059P	Sulfuric Acid	Reagent Grade	JBARNARD	8/23/2005
003131P	Anion Exchange Resin	Reagent Grade	TSMITH	8/31/2005
003271P	Anion Exchange Resin	Reagent Grade	TSMITH	8/31/2005
003271P	Anion Exchange Resin	Reagent Grade	BNEWTON	8/31/2005
003291S	HCI - HF	6.5N - 0.04N	BNEWTON	9/1/2005
003210S	Hydrochloric Acid	6.5N	BNEWTON	9/1/2005
003306S	Hydrochloric Acid	8N	BNEWTON	9/1/2005
003279P	Hydrochloric Acid	Reagent Grade	BNEWTON	9/1/2005
003321S	HCI - NH4I	8N - 0.1M	BNEWTON	9/1/2005
003279D02	Hydrochloric Acid	0.5N	BNEWTON	9/1/2005
003297S	Carbon substrate	Solution	BNEWTON	9/1/2005
002827P	Reagent Alcohol	Reagent Grade	BNEWTON	9/1/2005
003143P	Hydrofluoric Acid	Reagent Grade	BNEWTON	9/1/2005
002954S	Neodymium Carrier	1 mg/ml	BNEWTON	9/1/2005
002985P	Titanous Chloride	Reagent Grade	BNEWTON	9/1/2005

			and the same of				
				ALPHA 2		71	
	DAte	Sample#	alient	Load line	Ct. line	Analysis	Vect
	8.30.05	05081094(1-7)	Pcc	6731	ZHR-56mm	Th	20°
<u> </u>	8.3005	05081144(1-3,6)	Doet	0737	ZNR, 50mm.	Th	25
• •	8-30-05	05081114(1-3,5)	NFT	0137	ZHR. Som.	uu	1 20
	9.30-05	05081124(1-12)	PARSONS	1041	SHR. Som.	un	Dep -
	830-05	050 BLOYB (1-3)	CAS	1041	SHR 35mm	Am	20°
	8.30.05	0508095A (11-16)	Mizzon	1829	248 50mi	Ra	m
	8.31-05	Day Pueson	LAS	0454	10 mms.	NA	B
	8.32-05	0508124211-6)	CAS	0712	ZHR. SOM,	74 -	16P
	8.31-05	05080921(1-9)	urs	0712	24R. Som	ш	<i>\$</i> ₹
	8.31.05	05081244 (5.6)	CAS	1040	24R.50m	uu '	D
	831-05	0508077849441	(4) CA->	1040	2HR JOPM	Au	20°
****	831-05	0508124A(1,2)	CAS	1040	ZMR. DMA	Am	200
* 152 - 1	8.31-05	0508124A(6)	CAS	1352	24× 50m	Cm/Am	We -
*****	9-1-05	Dong Pusox	LAS	0415	10 mar -	NA	3h,
	9-1-05	CALIBRATION >	Las	0451	2/2HR	2150	λō ∽
	9-1-05	050 81174 (13)	CAS	0315	2HR, SOMMI	uu	DS
	9-1-05	05081294 (1-4,63)	Diesten	0612	24R 50m.	<u>uu</u>	20 -
	9-1-05	05030954(1-8)	MON	0815	24R 50m	m	<i>by</i>
7 3 4 5	9.2-05	Dany Purste	L18	0481	10 uns-	NA	M
	9-2-05	05080944 (14,17)	Men	0855	2HR STyra	Th	B
4	9.205	05081294(1-4,6,8)	Duestax	0855	ZHE SOMN-	7h)JJ
	9-205	05081414(1-4)	Cus	0855	248.50m	un	DP
	9-2-05	05080944 (1-3)	MON	0855	2He-50mm.	un	B
	-						in the second
· · ·							
<u> </u>	 						3/4
<u> </u>	1						
	 						
	<u> </u>						
	 						39%
							
	1						Ditto.

		"					and the same
				ALA43-3			7
./	DATE	SAMPLE#	CLIENT	LOOS TIME	CT. TIME	A NALY 575	TECH
	9-2-05	05081264(1,2)	CAS	N954	2HQ STOWN.	an	20
)		
							7
/							
							-4
						1	
							11
		,					
							1 1
]
							
	·						
- 17/4							
· · ·							
					-		
· · · · · · · · · · · · · · · · · · ·							
	-					***************************************	
-							
					*	-	
					-		
				·			
<u></u>							
<u> </u>							
			1				

ISO-TH NOTES

Oak Ridge Laboratory

601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com

Internal Work Order	05-08094
Analysis Code	ThISO
Run Number	1

#	Date	Dept	User	Notes
1	08/23/05 10:47	PREP	JBARNARD	ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN UNTIL NEAR DRY- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- PRECIPITATED WITH POTASSIUM SULFATE AND BA CARRIER- DECANTED SAMPLES AND CENTRIFUGED- ADDED .25M EDTA TO PRECIP, VORTEXED AND PUT SAMPLES IN A HOT WATER BATH- ADDED 10M KOH AND TICL3 AND PUT SAMPLES BACK IN THE HOT WATER BATH- VORTEXED AND CENTRIFUGED- ADDED 30MLS OF 8N HNO3 TO THE THORIUM PRECIP, VORTEXED AND SUBMITTED TO SEPARATIONS

Oak Ridge Laboratory

601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com

Internal Work Order	05-08094
Analysis Code	ThISO
Run Number	1

#	Date	Dept	User	Notes Source CAMPIES DOWN UNTIL
1	08/23/05 10:47	PREP	JBARNARD	ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN UNTIL NEAR DRY- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- PRECIPITATED WITH POTASSIUM SULFATE AND BA CARRIER- DECANTED SAMPLES AND CENTRIFUGED- ADDED .25M EDTA TO PRECIP, VORTEXED AND PUT SAMPLES IN A HOT WATER BATH- ADDED 10M KOH AND TICL3 AND PUT SAMPLES BACK IN THE HOT WATER BATH- VORTEXED AND CENTRIFUGED- ADDED 30MLS OF 8N HNO3 TO THE THORIUM PRECIP, VORTEXED AND SUBMITTED TO SEPARATIONS
2	09/01/05 11:31	CHEM	TSMITH	Followed steps 12.3 to 12.3.4 in AP-005 rev. 9 . (Column separation for Thorium)

5/1 lb

Oak Ridge Laboratory

601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com

Internal Work Order	05-08094
Analysis Code	ThISO
Run Number	1

#	Date	Dept	User	Notes
1	08/23/05 10:47	PREP	JBARNARD	ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN UNTIL NEAR DRY- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- PRECIPITATED WITH POTASSIUM SULFATE AND BA CARRIER- DECANTED SAMPLES AND CENTRIFUGED- ADDED .25M EDTA TO PRECIP, VORTEXED AND PUT SAMPLES IN A HOT WATER BATH- ADDED 10M KOH AND TICL3 AND PUT SAMPLES BACK IN THE HOT WATER BATH- VORTEXED AND CENTRIFUGED- ADDED 30MLS OF 8N HNO3 TO THE THORIUM PRECIP, VORTEXED AND SUBMITTED TO SEPARATIONS
2	09/01/05 11:31	CHEM	TSMITH	Followed steps 12.3 to 12.3.4 in AP-005 rev. 9 . (Column separation for Thorium)
3	09/01/05 17:01	CHEM	BNEWTON	Filtered samples and sent to count room (steps 12.3.4 to 12.5.5 in AP-005 Rev. 9)

boly eleven 9/105

Printed: 9/2/2005 6:40 AM Page 1 of 1

•		Internal	Work Order			
	COLINE	05-08094				
	SERVICES	Analysis Cod	Run 1			
	ents Used in an Analysis	ThIS				
Reagent ID	Reagent Name	Reagent Concentration	Analyst ID	Date Recorded		
003144P	Hydrofluoric Acid	Reagent Grade	JBARNARD	8/23/2005		
003137D07	Nitric Acid	8N	JBARNARD	8/23/2005		
003250P	Nitric Acid	Reagent Grade	JBARNARD	8/23/2005		
002930P	Perchloric Acid	Reagent Grade	JBARNARD	8/23/2005		
001365D01	Potassium Hydroxide	10M	JBARNARD	8/23/2005		
003136P	Potassium Sulfate	Reagent Grade	JBARNARD	8/23/2005		
000059P	Sulfuric Acid	Reagent Grade	JBARNARD	8/23/2005		
001010P	Titanous Chloride	Reagent Grade	JBARNARD	8/23/2005		
003255D02	Barium Carrier	50 mg/ml	JBARNARD	8/23/2005		
003272S	EDTA	0.25M	JBARNARD .	8/23/2005		
003131P	Anion Exchange Resin	Reagent Grade	TSMITH	8/31/2005		
003271P	Anion Exchange Resin	Reagent Grade	BNEWTON	8/31/2005		
003306S	Hydrochloric Acid	8N ·	TSMITH	9/1/2005		
003249D05	Nitric Acid	8N	TSMITH	9/1/2005		
000051D07	Cerium Carrier (Alpha iso)	Solution	BNEWTON	9/1/2005		
003143P	Hydrofluoric Acid	Reagent Grade	BNEWTON	9/1/2005		
003297S	Carbon substrate	Solution	BNEWTON	9/1/2005		
002827P	Reagent Alcohol	Reagent Grade	BNEWTON	9/1/2005		

							-
,			•	ALPHA 1		125	
ACT	Date	SAMPLE	CLIGIT	LOSO TIME	CT. TIME	l <u>.</u>	1
31.1	8-30-05	05081114(1-25)	NFT	0715	5HC- 350m	NP	20
	8.30-05	050 81114 (1-3,5)	NFT	0715	5HR. 35mm.	An	B
1.3	830-01	05081124 (1-7)	Parsons	0715	SHE. 35mar.	Th '	DP.
<i>:</i>	6.30.05	0508112A(10-12)	Porsons	1307	5HR 35mi	Am	M
•	831-05	Day Pausex	Las	0434	. 10mm	NA	8
<u></u>	8-31-05	CALIBRATIONS	LAB	0452	21/2HR	Ø1S0	20
, ù	8-31-08	05080724(10-20)	URS	6745	ZHR SOME	Ny	DP]
4 2 2	8-31-05	05081244(1-4)	CAS	0745	24R. 50mm	un	3°
	8.31-05	05081244(3-5)	CA-S	1/0(2HD,50m	Cm	200
	831-08	050 81304(1-4)	Paesous	1101	54R 35min	74	Dop
•	9-31-08	05081304(1-4)	Paesous	1101	5HR 35mm	Иц	500
9	8-31-05	050 81304 (1-4)	PARSONS	1101	34e 35 mm	Am	ap =
	9-1-05	DAILY PULSER	LAB	0415	10 min	NA	D-
· :	9-1-05	0508/29A(14.6.8)	Duestre	0707	2HR. SOMV.	NP	700 -
	9-1-05	05080924(1-9)	ues	0707	24R 50m	74	玩
	9-1-05	0508954 (016)	MPN	1030	2112 Sonw.	un	18
3.49	9-1-05	05081294-(1-4,69)	DIEARTE	1030	24R.50m	Arakun	25
<u> </u>	9.1.05	0508128A (17)	Duratih	1654	SHR 35 min	Ra	me
	9-2-05	DANGRULSER	hes	OYZI	1041'N-	WA	200
	9-2-05	0508094A(1-15)	MON	0812	2HR. SOWN.	7h	200
<u> </u>							
	_						
<u>:</u> 1							
, - ·			*				
							-
							J
		200000000000000000000000000000000000000					-

				200 200 000 000 000 000 000 000 000			- The same
,				ALPHA 2		71	
	DAte	Sample#	alient	Load line	Ct. line	ANALYSIS	Hech in,
	8.30.05	05081094(1-7)	Pcc	6731	ZHR-56mm	Th	200
	8.30.05	05081144(1-3,6)	DopH	0737	ZNR, 50mm.	Th	25
	8-30-05	05081114(1-3,5)	NFT	0137	ZHR. Som.	un	20
	830 os	05081124(1-12)	PARSONS	1041	SHR, Som.	un	DeP
	830-05	050 BIOYB (1-3)	CAS	1041	SHR 35mm	Am	200°
	8.30.05	0508095A (11-16)	Mizzon	1829	24 50 mi	Ra	m
	8.31-05	Dry Pusser	LAS	0484	10 ms.	NA)
	8.3208	0508124211-6)	CAS	0712	ZHR. SOM,	74 -	16P
	8.31-05	05080922(1-9)	urs	0712	24R. Som	uu	か
	8.31.05	05081244 (5.6)	CAS	JOY O	24R.50m	uu	6
•	831-05	050807869,6-192	14) CA>	10Y0	2HR JOPM	Am	20°
• • • • • •	931-05	05081240(1,2)	CAS	1040	ZMR. DOMA	Am	3 00
* ₃ \$2 = 2 \frac{1}{2} \tag{2}	8.31-05	0508124A(b)	CAS	1352	2412 50m	Cm/Am	M
	9-1-05	DongPrisox	LAS	0415	10 mn -	NA	Dr
	9-1-05	CALIBRATIONS	Lab	0451	2/2HR	2150	∂ ∂
	9-1-05	050 81174 (13)	CAS	0315	2HR, SOM	uu	DS
	9-1-05	05081294 (1-4,63)	Duesten	0815	24R 50m.	uu_	20
	9-1-05	05050954(1-8)	MON	0815	24R 50m	- uu	00
<u> </u>	9-2-05	Damy Purste	LA8	0451	10 uns.	NA	≥ 4
	9-2-05	05080944 (14.17)	MeN	0850	2HR Somm	7h	2
	9.205	05081294(1-4,6,8)	Duestick	0855	ZHR. SOMM-	7h	Jo
	9-2-05	05081414(1-4)	Cus	0855	2He. Som	un	DP
	9-2-05	05080944 (1-3)	MON	0855	2HR-50mm.	un	18
						:	
<u> </u>	<u> </u>						
	 						
							Jan
	 						
	 						

RA-226 NOTES

Oak Ridge Laboratory

601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com

Internal Work Order	05-08094
Analysis Code	Ra226
Run Number	1

#	Date	Dept	User	Notes
1	08/23/05 10:50	PREP	JBARNARD	ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN UNTIL NEAR DRY- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- PH'D SAMPLES TO 2.8-3.0-PRECIPITATED WITH POTASSIUM SULFATE AND BA AND PB CARRIERS- DECANTED SAMPLES AND CENTRIFUGED- ADDED .25M EDTA AND PHENOLPTHALIEN TO PRECIP, VORTEXED AND PUT SAMPLES IN A HOT WATER BATH- VORTEXED AND CHECKED PH- PUT SAMPLES BACK IN THE HOT WATER BATH- VORTEXED AND CENTRIFUGED- TRANSFERRED SUPERNATE INTO CLEAN C-TUBES AND SUBMITTED TO SEPARATIONS

Oak Ridge Laboratory

601 Scarboro Rd.
Oak Ridge, TN 37830
Voice: 865.481.0683
www.eberlineservices.com

Internal Work Order	05-08094
Analysis Code	Ra226
Run Number	1

#	Date	Dept	User	Notes
1	08/23/05 10:50	PREP	JBARNARD	ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN UNTIL NEAR DRY- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- PH'D SAMPLES TO 2.8-3.0- PRECIPITATED WITH POTASSIUM SULFATE AND BA AND PB CARRIERS- DECANTED SAMPLES AND CENTRIFUGED- ADDED. 25M EDTA AND PHENOLPTHALIEN TO PRECIP, VORTEXED AND PUT SAMPLES IN A HOT WATER BATH- VORTEXED AND CHECKED PH- PUT SAMPLES BACK IN THE HOT WATER BATH- VORTEXED AND CENTRIFUGED- TRANSFERRED SUPERNATE INTO CLEAN C-TUBES AND SUBMITTED TO SEPARATIONS
2	08/26/05 13:20	CHEM	DJOHNSON	Received samples from prep lab in EDTA. Re-precipitated samples with glacial acetic acid and ammonium sulfate. Filtered samples on tarred filters.Rinsed c-tubes and funnels with diH2O and filtered. Dried and reweighed sample filters. No problems were noted in this set. Submitted samples to the count room.

Printed: 8/26/2005 1:27 PM Page 1 of 1

270		Internal Work Order 05-08094				
Ø F p	ERLINE					
	SERVICES	Analysis Co	Run			
	ents Used in an Analysis	Ra22	1			
Reagent ID	Reagent Name	Reagent Concentration	Analyst ID	Date Recorded		
001772P	Ammonium Hydroxide	Reagent Grade	JBARNARD	8/23/2005		
001755S	Phenolphthalein Indicator	0.1%	JBARNARD	8/23/2005		
000059P	Sulfuric Acid	Reagent Grade	JBARNARD	8/23/2005		
003144P	Hydrofluoric Acid	Reagent Grade	JBARNARD	8/23/2005		
003250P	Nitric Acid	Reagent Grade	JBARNARD	8/23/2005		
002930P	Perchloric Acid	Reagent Grade	JBARNARD	8/23/2005		
003136P	Potassium Sulfate	Reagent Grade	JBARNARD	8/23/2005		
003255D01	Barium Carrier	1 mg/ml	JBARNARD	8/23/2005		
001848D10	Lead Carrier	40 mg/ml	JBARNARD	8/23/2005		
003272S	EDTA	0.25M	JBARNARD	8/23/2005		
000868P	Acetic Acid	Reagent Grade	DJOHNSON	8/26/2005		
002851D02	Ammonium Sulfate	200 mg/ml	DJOHNSON	8/26/2005		

				ALPHA-3	•		
.				HLTHAS			15
		- 0 -#	Q	1		1.4	T
	DATE	SAMPLE #	CLIENT	LODO TIME		ANALYSIS	TECH.
	8.26-25	05081044(1-4)	CHS	0623	5HR 35m	un	8
/	8-16-05	050811 UA (Q-11,B)		0806	ZHR. Som.	Pa	0.6
/	8-26-05	0508110A (1-7)	CAS	0806	240. Sum	Austan	BP .
	8.26.05	Weekly Bkgd	LAB	1200	164R 40mi	d-150	MZ.
	8-24-05	Donguese	Las	7808	10m.	ma	Jog "
	8270	05080742 (1-17)	MON	0854	240 Dom	Ren	
;							
				<u></u>			
			•				
			·				
							1 7
		•	/				1 4
			_		·		
<u>3</u> .	· · · · · · · · · · · · · · · · · · ·						1 4
							1 4
		1					
							1 4
							1
							1-4
	•		· · · · · · · · · · · · · · · · · · ·	, , ,			 排
				-			1 1
er en a						,	
			•				4
							4
							
							#
·							
						'	
							1
						procession and the second	NO THE PARTY OF TH

SECTION VIII ANALYTICAL DATA (ISOTOPIC URANIUM)

05-08094 UNISO Run 1

Printed: 9/2/2005 6:40 AM Page 1 of 3

1.0000E+00

Sample Aliquot

1.0000E+00

1.0128E+00

1.0602E+00

1.0031E+00

1.0334E+00

1.0182E+00

1.0459E+00

1.0206E+00

1.0670E+00

9.9410E-01

1.1611E+00

1.0491E+00

1.1018E+00

1.1677E+00

1.0222E+00

1.0246E+00

n Fr					esources						ed	yqc							
05-08094	OSINN	1	8/19/2005	9/9/2005	Missouri Dept. of Natural Resources	B3Z02092	4	pCi	D	os	EML U-02 Modified	Alpha Spectroscopy	U-232	U-10a	20.756				
Work Order	Analysis Code	Run	Date Received	Lab Deadline	Client	Project	Report Level	Activity Units	Aliquot Units	Matrix	Method	Instrument Type	Radiometric Tracer	Radiometric Sol#	Tracer Act (dpm/g)	Carrier	Carrier Conc (mg/ml)		

Work Order	05-08094	Internal Fraction	Sample Desc	Client ID	Login CPM	Sample Date	
alysis Code	OSINN	10	SOT	SOT		08/22/05 00:00	
Run	_	02	MBL	BLANK		08/22/05 00:00	
te Received	8/19/2005	03	DUP	VPSCR081705SL01	42	08/17/05 10:02	
ab Deadline	9/9/2005	04	8	VPSCR081705SL01	42	08/17/05 10:02	
Client	Missouri Dept. of Natural Resources	05	TRG	VPSCR081705SL02	35	08/17/05 10:04	
Project	B3Z02092	90	TRG	VPSCR081705SL03	45	08/17/05 10:08	
Report Level	4	07	TRG	VPSCR081705SL04	38	08/17/05 10:09	
ctivity Units	pCi	80	TRG	VPSCR081705SL05	41	08/17/05 10:11	
liquot Units	ס	60	TRG	VPSCR081705SL06	38	08/17/05 10:18	
Matrix	SO	10	TRG	VPSCR081705SL07	41	08/17/05 10:20	
Method	EML U-02 Modified	1	TRG	VPSCR081705SL08	47	08/17/05 10:21	
ument Type	Alpha Spectroscopy	12	TRG	VPSCR081705SL09	37	08/17/05 10:23	
netric Tracer	U-232	13	TRG	VPSCR081705SL10	30	08/17/05 10:25	
metric Sol#	U-10a	14	TRG	VPSCR081705SL11	42	08/17/05 10:27	
r Act (dpm/g)	20.756	15	TRG	VPSCR081705SL12	37	08/17/05 10:30	
Carrier		16	TRG	VPSCR081705SL13	46	08/17/05 10:32	
onc (mg/ml)		17	TRG	VPSCR081705SL14	41	08/17/05 10:44	
					,		

074

Printed: 9/2/2005 6:40 AM Page 2 of 3

05-08094 UUISO Run 1

05-08094 UUISO Run 1

Printed: 9/2/2005 6:40 AM Page 3 of 3

Internal Fraction	Sample Desc	Rough Prep Date	Rough Prep By	Prep Date	Prep By	Sep t0 Date/Time	Sep t0 By	Sep t1 Date/Time	Sep t1 By	
10	SOT			08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
02	MBL			08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
03	DUP			08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
90	8	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
05	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
90	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
07	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
80	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
60	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
10	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON		,	
7	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
12	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
13	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
4	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
15	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
16	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON		į	
17	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:59	JBARNARD	09/02/05 06:40	BNEWTON			
				-						
									i	

иnы

Analysis Code

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-UUISO-1

Printed: 9/2/2005 1:37 PM Page 1 of 3

		<u> </u>	<u></u> Լ)S	100	<u></u>		760)80	-C/	<u> </u>	səc	nos	al Re	Jutel	1 30 J	Dep	inuos	_ _ 3S
Lab Fraction	20	02	03	04	05	90	20	80	60	10	7	12	13	14	15	16	17			
Nuclide	U-234	U-234	U-234	U-234	U-234	U-234	U-234	U-234	U-234	U-234	U-234	U-234	U-234	U-234	U-234	U-234	U-234			
Sample Desc	SOT	MBL	DUP	8	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG			
Client Identification	FCS	BLANK	VPSCR081705SL01	VPSCR081705SL01	VPSCR081705SL02	VPSCR081705SL03	VPSCR081705SL04	VPSCR081705SL05	VPSCR081705SL06	VPSCR081705SL07	VPSCR081705SL08	VPSCR081705SL09	VPSCR081705SL10	VPSCR081705SL11	VPSCR081705SL12	VPSCR081705SL13	VPSCR081705SL14			A CANADA
Activity Units	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g			
Results	8.02E+00	1.82E-01	9.44E-01	8.76E-01	9.74E-01	9.13E-01	7.26E-01	1.02E+00	9.27E-01	1.01E+00	1.03E+00	1.04E+00	1.26E+00	7.80E-01	1.03E+00	8.51E-01	9.71E-01			
Error Estimate	1.35E+00	1.09E-01	2.64E-01	2.51E-01	2.70E-01	2.68E-01	2.06E-01	2.84E-01	2.50E-01	2.92E-01	2.81E-01	2.63E-01	3.21E-01	2.32E-01	3.40E-01	2.41E-01	2.67E-01			
MDA	1.07E-01	1.04E-01	7.24E-02	7.13E-02	3.67E-02	8.67E-02	5.10E-02	6.49E-02	5.59E-02	7.01E-02	7.38E-02	3.05E-02	3.70E-02	3.52E-02	1.12E-01	5.81E-02	7.14E-02			
LCS	7.98E+00																			
LCS %R	100.50				and a charge and it was a com-															
LCS Flag	OK																			
RPD Flag			¥																	
MDA Flag	o X	ş	Ş	Š	o X	Š	o X	Š	o X	Š	OK									
Blank Flag		ş																		

Eberline Services Work Order

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-UUISO-1

Eberline Services Oak Ridge Laboratory

Sep t1 Date/Time																			
Sep t0 Date/Time	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40		
SAF																			
Mean % Rec																			
Grav % Rec																			
Radiometric % Rec	92.26	93.12	101.00	89.40	96.79	87.15	112.97	86.06	107.13	80.27	93.92	96.12	85.31	85.26	52.44	100.72	94.47		
Sample Aliquot	1.00E+00	1.00E+00	1.01E+00	1.06E+00	1.00E+00	1.03E+00	1.02E+00	1.05E+00	1.02E+00	1.07E+00	9.94E-01	1.16E+00	1.05E+00	1.10E+00	1.17E+00	1.02E+00	1.02E+00		
Sample Date	08/22/05 00:00	08/22/05 00:00	08/17/05 10:02	08/17/05 10:02	08/17/05 10:04	08/17/05 10:08	08/17/05 10:09	08/17/05 10:11	08/17/05 10:18	08/17/05 10:20	08/17/05 10:21	08/17/05 10:23	08/17/05 10:25	08/17/05 10:27	08/17/05 10:30	08/17/05 10:32	08/17/05 10:44		
Sample Desc	SOT	MBL	DUP	8	TRG		-												
Nuclide	U-234																		
Lab Fraction	10	02	03	04	02	90	20	80	60	9	11	12	13	14	15	16	17		-

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-UUISO-1

Printed: 9/2/2005 1:37 PM Page 3 of 3

	Fraction	Nuclide	Desc	Date/Time	(days)	Detect	Callier	Time	511100	СРМ	ij
	0.1	U-234	rcs	09/02/05 08:54		A_Spec	30	170.02	5.84 E+02	7.00 E-03	21
	02	U-234	MBL	09/02/05 08:55		A_Spec	31	170.02	170.02 1.30 E+01	6.00 E-03	20.3
	03	U-234	DUP	09/02/05 08:55		A_Spec	32	170.08	170.08 7.07 E+01	2.00 E-03	19.4
1	04	U-234	8	09/02/05 09:45		A_Spec	33	170	170 6.67 E+01	2.00 E-03	21.3
	05	U-234	TRG	09/02/05 09:45		A_Spec	34	170	170 7.20 E+01	0.00 E+00	20.2
1	90	U-234	TRG	09/02/05 09:45		A_Spec	35	170	170 6.35 E+01	3.00 E-03	20.5
	07	U-234	TRG	09/02/05 09:46		A_Spec	36	170	170 6.58 E+01	1.00 E-03	20.9
	80	U-234	TRG	09/02/05 09:46		A_Spec	37	170	170 7.28 E+01	1.00 E-03	21
1	60	U-234	TRG	09/02/05 09:46		A_Spec	38	170	170 7.68 E+01	1.00 E-03	20.1
	10	U-234	TRG	09/02/05 09:46		A_Spec	39	170	170 6.68 E+01	1.00 €-03	20.5
	11	U-234	TRG	09/02/05 09:47		A_Spec	40	170	170 7.57 E+01	2.00 E-03	20.9
	12	U-234	TRG	09/02/05 09:47		A_Spec	41	170	170 9.20 E+01	0.00 E+00	21.1
	13	U-234	TRG	09/02/05 09:47		A_Spec	42	170	170 9.20 E+01	0.00 E+00	21.7
	14	U-234	TRG	09/02/05 09:48		A_Spec	43	170	170 6.00 E+01	0.00 E+00	21.7
	15	U-234	TRG	09/02/05 09:48		A_Spec	44	170	170 4.97 E+01	2.00 E-03	21
l	16	U-234	TRG	09/02/05 09:48		A_Spec	45	170	170 6.78 E+01	1.00 E-03	20.5
	17	U-234	TRG	09/02/05 09:49		A_Spec	46	170	170 7.37 E+01	2.00 E-03	20.8
											-
		The statement of the st			The second secon						
		:									

†6080-90

Eberline Services Work Order

OSINN

Analysis Code

L

uny

Missouri Dept. of Matural Resources

unษ

Analysis Code

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-UUISO-1

Printed: 9/2/2005 1:37 PM Page 1 of 3

			 	()S	IN	<u> </u>		760	080	-9(0	səo	sonu	al Re	Jatur	t of t	Deb	inuoa	siN
Lab Fraction	01	02	03	04	05	90	20	80	60	10	7	12	13	4	15	16	17			
Nuclide	U-235	U-235	U-235	U-235	U-235	U-235	U-235	U-235	U-235	U-235	U-235	U-235	U-235	U-235	U-235	U-235	U-235			
Sample Desc	SOT	MBL	DUP	8	TRG															
Client Identification	FCS	BLANK	VPSCR081705SL01	VPSCR081705SL01	VPSCR081705SL02	VPSCR081705SL03	VPSCR081705SL04	VPSCR081705SL05	VPSCR081705SL06	VPSCR081705SL07	VPSCR081705SL08	VPSCR081705SL09	VPSCR081705SL10	VPSCR081705SL11	VPSCR081705SL12	VPSCR081705SL13	VPSCR081705SL14			
Activity Units	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCI/g	pCi/g	pCi/g	pCI/g	pCi/g	pCI/g	pCi/g	pCI/g	pCi/g	pCi/g			
Results	3.70E-01	6.93E-02	7.40E-02	9.73E-02	1.17E-01	8.26E-02	4.08E-02	1.04E-01	3.71E-02	1.55E-02	3.36E-02	5.56E-02	6.74E-02	2.94E-02	9.76E-02	1.55E-02	1.63E-01			
Error Estimate	1.68E-01	7.00E-02	7.51E-02	8.07E-02	9.00E-02	8.07E-02	4.75E-02	8.61E-02	5.26E-02	3.80E-02	4.77E-02	5.62E-02	6.81E-02	4.59E-02	1.04E-01	3.10E-02	1.06E-01			
MDA	7.84E-02	4.69E-02	9.94E-02	4.40E-02	4.52E-02	9.61E-02	3.69E-02	4.69E-02	8.98E-02	8.65E-02	4.55E-02	3.77E-02	4.56E-02	7.42E-02	1.18E-01	4.20E-02	4.41E-02			
LCS Known	3.62E-01																			
LCS %R	102.09		enter enterper subtiliza una se re																	
LCS Flag	OK																			
RPD Flag			<u>N</u>																	
MDA Flag	OK	OK	Š	Ą	Š	O X	OK	OK	ÖK	ş	OK	Š	OK	Š	OK	OK	Š		-	
Blank Flag		OK																		

Eberline Services Work Order

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-UUISO-1

Printed: 9/2/2005 1:37 PM Page 2 of 3

~@		u	าย	a	po) s	isylsn	A	rder	Work C	vices	ieč eni	µeq∃				ţu€	Cll			
A _	J		,	(OS	IU)	t	760	980	-9(0	səɔ	sont	al Re	latur	t. of I	Deb.	sonı	siM
Lab Fraction	01	02	03	04	05	90	07	80	60	10	7	12	13	14	15	16	17			
Nuclide	U-235																			
Sample Desc	SOT	MBL	DUP	8	TRG															
Sample Date	08/22/05 00:00	08/22/05 00:00	08/17/05 10:02	08/17/05 10:02	08/17/05 10:04	08/17/05 10:08	08/17/05 10:09	08/17/05 10:11	08/17/05 10:18	08/17/05 10:20	08/17/05 10:21	08/17/05 10:23	08/17/05 10:25	08/17/05 10:27	08/17/05 10:30	08/17/05 10:32	08/17/05 10:44			-
Sample Aliquot	1.00E+00	1.00E+00	1.01E+00	1.06E+00	1.00E+00	1.03E+00	1.02E+00	1.05E+00	1.02E+00	1.07E+00	9.94E-01	1.16E+00	1.05E+00	1.10E+00	1.17E+00	1.02E+00	1.02E+00			
Radiometric % Rec	92.26	93.12	101.00	89.40	96.79	87.15	112.97	86.06	107.13	80.27	93.92	96.12	85.31	85.26	52.44	100.72	94.47			
Grav % Rec																				
Mean % Rec																				
SAF																				
Sep t0 Date/Time	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40			
Sep t1 Date/Time																				

uny

Analysis Code

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-UUISO-1

Printed: 9/2/2005 1:37 PM Page 3 of 3

Eberline Services Work Order

uny

Analysis Code

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-UUISO-1

Printed: 9/2/2005 1:37 PM Page 1 of 3

			 -	•	os	in (<u> </u>		760	100	-C	<u> </u>	səc	nnos	al Re	atur.	t of t	Deb	inuos	esiM
Lab Fraction	2	05	03	04	02	90	20	80	60	9	7	12	13	14	15	16	17			
Nuclide	U-238	U-238	U-238	U-238	U-238	U-238	U-238	U-238	U-238	U-238	U-238	U-238	U-238	U-238	U-238	U-238	U-238			
Sample Desc	SOT	MBL	PUP	8	TRG															
Client identification	SOT	BLANK	VPSCR081705SL01	VPSCR081705SL01	VPSCR081705SL02	VPSCR081705SL03	VPSCR081705SL04	VPSCR081705SL05	VPSCR081705SL06	VPSCR081705SL07	VPSCR081705SL08	VPSCR081705SL09	VPSCR081705SL10	VPSCR081705SL11	VPSCR081705SL12	VPSCR081705SL13	VPSCR081705SL14			
Activity Units	pCl/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCI/g	pCi/g	pCi/g			
Results	8.43E+00	7.67E-02	6.63E-01	8.90E-01	9.39E-01	1.00E+00	5.71E-01	8.38E-01	7.51E-01	9.18E-01	1.03E+00	7.07E-01	9.79E-01	7.77E-01	8.50E-01	9.35E-01	9.03E-01	4.1879999		
Error Estimate	1.41E+00	6.99E-02	2.12E-01	2.53E-01	2.64E-01	2.82E-01	1.78E-01	2.50E-01	2.19E-01	2.74E-01	2.80E-01	2.06E-01	2.72E-01	2.31E-01	3.04E-01	2.55E-01	2.55E-01			
MDA	8.25E-02	8.43E-02	6.16E-02	3.55E-02	7.31E-02	3.88E-02	2.98E-02	3.78E-02	7.25E-02	6.98E-02	6.27E-02	3.04E-02	3.68E-02	3.51E-02	1.35E-01	5.78E-02	6.07E-02			
LCS Known	7.78E+00																			
LCS %R	108.40																			
LCS Flag	OK																			
RPD Flag			<u>≥</u>																	
MDA Flag	OK	Š	ò	OK	OK	OK	ş	Š	OK X	o X	OK	OK	OK	Ą	Ą	OK	OK			
Blank Flag		ş																		

Eberline Services Work Order

900

Run

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-UUISO-1

Printed: 9/2/2005 1:37 PM Page 2 of 3

Lab Fraction	Nuclide	Sample Desc	Sample Date	Sample Aliquot	Radiometric % Rec	Grav % Rec	Mean % Rec	SAF	Sep t0 Date/Time	Sep t1 Date/Time
10	U-238	SOT	08/22/05 00:00	1.00E+00	92.26				9/2/2005 6:40	
02	U-238	MBL	08/22/05 00:00	1.00E+00	93.12				9/2/2005 6:40	
03	U-238	DUP	08/17/05 10:02	1.01E+00	101.00				9/2/2005 6:40	
04	U-238	8	08/17/05 10:02	1.06E+00	89.40				9/2/2005 6:40	
05	U-238	TRG	08/17/05 10:04	1.00E+00	96.79				9/2/2005 6:40	
90	U-238	TRG	08/17/05 10:08	1.03E+00	87.15				9/2/2005 6:40	
20	U-238	TRG	08/17/05 10:09	1.02E+00	112.97				9/2/2005 6:40	
80	U-238	TRG	08/17/05 10:11	1.05E+00	86.06				9/2/2005 6:40	
60	U-238	TRG	08/17/05 10:18	1.02E+00	107.13				9/2/2005 6:40	
10	U-238	TRG	08/17/05 10:20	1.07E+00	80.27				9/2/2005 6:40	
11	U-238	TRG	08/17/05 10:21	9.94E-01	93.92				9/2/2005 6:40	
12	U-238	TRG	08/17/05 10:23	1.16E+00	96.12				9/2/2005 6:40	
13	U-238	TRG	08/17/05 10:25	1.05E+00	85.31				9/2/2005 6:40	
14	U-238	TRG	08/17/05 10:27	1.10E+00	85.26				9/2/2005 6:40	
15	U-238	TRG	08/17/05 10:30	1.17E+00	52.44				9/2/2005 6:40	
16	U-238	TRG	08/17/05 10:32	1.02E+00	100.72				9/2/2005 6:40	
17	U-238	TRG	08/17/05 10:44	1.02E+00	94.47				9/2/2005 6:40	

†6080-90

Eberline Services Work Order

OSINN

Analysis Code

Missouri Dept. of Natural Resources

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-UUISO-1

Printed: 9/2/2005 1:37 PM Page 3 of 3

	Lab Fraction	Nuclide	Sample Desc	Counting Date/Time	Halflife (days)	Detect	Carrier	Count Time	Counts	Bkg CPM	Eff
	01	U-238	SOT	09/02/05 08:54		A_Spec	30	170.02	170.02 6.17 E+02	3.00 E-03	21
	02	U-238	MBL	09/02/05 08:55		A_Spec	31	170.02	5.49 E+00	3.00 E-03	20.3
	03	U-238	DUP	09/02/05 08:55		A_Spec	32	170.08	170.08 4.98 E+01	1.00 E-03	19.4
•	04	U-238	8	09/02/05 09:45		A_Spec	33	170	6.80 E+01	0.00 E+00	21.3
	05	U-238	TRG	09/02/05 09:45		A_Spec	34	170	170 6.97 E+01	2.00 E-03	20.2
	90	U-238	TRG	09/02/05 09:45		A_Spec	35	170	170 7.00 E+01	0.00 E+00	20.5
	20	U-238	TRG	09/02/05 09:46		A_Spec	36	170	5.20 E+01	0.00 E+00	20.9
	80	U-238	TRG	09/02/05 09:46		A_Spec	37	170	170 6.00 E+01	0.00 E+00	21
	60	U-238	TRG	09/02/05 09:46		A_Spec	38	170	6.25 E+01	3.00 E-03	20.1
	10	U-238	TRG	09/02/05 09:46		A_Spec	39	170	6.08 E+01	1.00 E-03	20.5
	7	U-238	TRG	09/02/05 09:47		A_Spec	40	170	7.58 E+01	1.00 E-03	20.9
	12	U-238	TRG	09/02/05 09:47		A_Spec	41	170	170 6.30 E+01	0.00 E+00	21.1
	13	U-238	TRG	09/02/05 09:47		A_Spec	42	170	170 7.20 E+01	0.00 E+00	21.7
	14	U-238	TRG	09/02/05 09:48		A_Spec	£4	170	170 6.00 E+01	0.00 E+00	21.7
	15	U-238	TRG	09/02/05 09:48		A_Spec	4	170	170 4.13 E+01	4.00 E-03	21
	16	U-238	TRG	09/02/05 09:48		A_Spec	45	170	170 7.48 E+01	1.00 E-03	20.5
	17	U-238	TRG	09/02/05 09:49		A_Spec	46	170	170 6.88 E+01	1.00 E-03	20.8
											-

†6080-90

Eberline Services Work Order

OSINN

Analysis Code

uny

Missouri Dept. of Natural Resources

uny

Analysis Code

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-UUISO-1

Printed: 9/2/2005 1:37 PM Page 1 of 3

			 - -)S				-06)80		<u> </u>	sən	sonu	al Ke	aatur	1 10 1	neb	unos	SUA
Lab Fraction	02	03	2	05	90	07	80	60	19	7	12	13	4	15	16	17	11			
Nuclide	U-236	U-236	U-236	U-236	U-236	U-236	U-236	U-236	U-236	U-236	U-236	U-236	U-236	U-236	U-236	U-236				
Sample Desc	MBL	DQ.	8	TRG																
Client Identffication	BLANK	VPSCR081705SL01	VPSCR081705SL01	VPSCR081705SL02	VPSCR081705SL03	VPSCR081705SL04	VPSCR081705SL05	VPSCR081705SL06	VPSCR081705SL07	VPSCR081705SL08	VPSCR081705SL09	VPSCR081705SL10	VPSCR081705SL11	VPSCR081705SL12	VPSCR081705SL13	VPSCR081705SL14				
Activity Units	pCI/g	bCi/g	pCi/g	bCi/g	pCI/g	pCI/g	pCI/g	pCi/g	pCI/g	pCi/g										
Results	1.29E-02	-2.52E-03	0.00E+00	3.00E-02	1.59E-02	1.22E-02	-5.28E-03	3.56E-02	1.68E-02	1.51E-02	3.53E-02	6.05E-02	1.44E-02	1.90E-02	3.70E-02	8.76E-02				
Error Estimate	3.16E-02	5.05E-03	0.00E+00	4.26E-02	3.19E-02	2.45E-02	7.51E-03	4.70E-02	3.37E-02	3.02E-02	4.38E-02	6.11E-02	2.89E-02	4.65E-02	4.89E-02	7.26E-02				
MDA	7.19E-02	6.85E-02	3.95E-02	4.06E-02	4.32E-02	3.31E-02	8.42E-02	7.25E-02	4.55E-02	4.09E-02	5.78E-02	4.10E-02	3.90E-02	1.06E-01	7.54E-02	3.96E-02				
LCS Known																				
LCS %R																				
LCS Flag																				
RPD Flag		Š																		
MDA Flag	OK	Ą	Ş	ş	Ą	ş	Ą	9 X	Ş	Ą	o X	ş	¥	¥	¥	ş				
Blank Flag	OK																			

Eberline Services Work Order

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-UUISO-1

Printed: 9/2/2005 1:37 PM Page 2 of 3

Sep t1 Date/Time																		
Sep t0 Date/Time D	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40	9/2/2005 6:40		
SAF																		
Mean % Rec								•						,				
Grav % Rec																		
Radiometric % Rec	93.12	101.00	89.40	96.79	87.15	112.97	86.06	107.13	80.27	93.92	96.12	85.31	85.26	52.44	100.72	94.47		
Sample Aliquot	1.00E+00	1.01E+00	1.06E+00	1.00E+00	1.03E+00	1.02E+00	1.05E+00	1.02E+00	1.07E+00	9.94E-01	1.16E+00	1.05E+00	1.10E+00	1.17E+00	1.02E+00	1.02E+00		
Sample Date	08/22/05 00:00	08/17/05 10:02	08/17/05 10:02	08/17/05 10:04	08/17/05 10:08	08/17/05 10:09	08/17/05 10:11	08/17/05 10:18	08/17/05 10:20	08/17/05 10:21	08/17/05 10:23	08/17/05 10:25	08/17/05 10:27	08/17/05 10:30	08/17/05 10:32	08/17/05 10:44		
Sample Desc	MBL	DOP	8	TRG														
Nuclide	U-236																	
Lab Fraction	05	03	04	05	90	20	80	60	10	11	12	13	14	15	16	17		

†6080-90

Eberline Services Work Order

OSINN

Analysis Code

นทษ

Missouri Dept. of Natural Resources

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-UUISO-1

Eberline Services Oak Ridge Laboratory

Lab Fraction	Nuclide	Sample Desc	Counting Date/Time	Halflife (days)	Detect	Carrier	Count	Counts	Bkg CPM	Eff
02	U-236	MBL	09/02/05 08:55		A_Spec	31	170.02	170.02 8.30 E-01	1.00 E-03	20.3
03	U-236	DUP	09/02/05 08:55		A_Spec	32	170.08	170.08 -1.70 E-01	1.00 E-03	19.4
04	U-236	8	09/02/05 09:45		A_Spec	33	170	170 0.00 E+00	0.00 E+00	21.3
05	U-236	TRG	09/02/05 09:45		A_Spec	34	170	170 2.00 E+00	0.00 E+00	20.2
90	U-236	TRG	09/02/05 09:45		A_Spec	35	170	170 1.00 E+00	0.00 E+00	20.5
07	U-236	TRG	09/02/05 09:46		A_Spec	36	170	170 1.00 E+00	0.00 E+00	20.9
80	U-236	TRG	09/02/05 09:46		A_Spec	37	170	170 -3.40 E-01	2.00 E-03	21
60	U-236	TRG	09/02/05 09:46		A_Spec	38	170	170 2.66 E+00	2.00 E-03	20.1
10	U-236	TRG	09/02/05 09:46		A_Spec	39	170	170 1.00 E+00	0.00 E+00	20.5
-	U-236	TRG	09/02/05 09:47		A_Spec	40	170	170 1.00 E+00	0.00 E+00	20.9
12	U-236	TRG	09/02/05 09:47		A_Spec	41	170	170 2.83 E+00	1.00 E-03	21.1
13	U-236	TRG	09/02/05 09:47		A_Spec	42	170	170 4.00 E+00	0.00 E+00	21.7
14	U-236	TRG	09/02/05 09:48		A_Spec	43	170	170 1.00 E+00	0.00 E+00	21.7
15	U-236	TRG	09/02/05 09:48		A_Spec	44	170	170 8.30 E-01	1.00 E-03	21
16	U-236	TRG	09/02/05 09:48		A_Spec	45	170	170 2.66 E+00	2.00 E-03	20.5
17	U-236	TRG	09/02/05 09:49		A_Spec	46	170	170 6.00 E+00	0.00 E+00	20.8
							-			
										-

†6080-90

Eberline Services Work Order

OSINN

Analysis Code

uny

Missouri Dept. of Matural Resources

Printed: 9/2/2005 6:40 AM Page 1 of 1

05-08094-UUISO-1 (pCi/g) in SO Tracer ID: U-10a

ر	
7	
١	
8	
33	
-42	
30.	

Internal Fraction	Sample Desc	Client ID	Sample Date	Sample Aliquot	Tracer Aliquot (g)	Tracer ACT (dpm)	Radiometric Tracer (pCi)	Radiometric % Rec	SAF 1*	SAF 2*
01	SOT	SOT	08/22/05 00:00	1.0000	0.6181	12.8293				
02	MBL	BLANK	08/22/05 00:00	1.0000	0.6094	12.6487				
03	DUP	VPSCR081705SL01	08/17/05 10:02	1.0128	0.6044	12.5449				
6	00	VPSCR081705SL01	08/17/05 10:02	1.0602	0.5977	12.4059				
02	TRG	VPSCR081705SL02	08/17/05 10:04	1.0031	0.6066	12.5906				
90	TRG	VPSCR081705SL03	08/17/05 10:08	1.0334	0909'0	12.5781				
20	TRG	VPSCR081705SL04	08/17/05 10:09	1.0182	0.6024	12.5034				
80	TRG	VPSCR081705SL05	08/17/05 10:11	1.0459	0.5975	12.4017				
60	TRG	VPSCR081705SL06	08/17/05 10:18	1.0206	0.5913	12.2730				
10	TRG	VPSCR081705SL07	08/17/05 10:20	1.0670	0.6156	12.7774				
7	TRG	VPSCR081705SL08	08/17/05 10:21	0.9941	0.6087	12.6342				
12	TRG	VPSCR081705SL09	08/17/05 10:23	1.1611	0.6076	12.6113				
13	TRG	VPSCR081705SL10	08/17/05 10:25	1.0491	0.6026	12.5076				
14	TRG	VPSCR081705SL11	08/17/05 10:27	1.1018	0.6007	12.4681				
15	TRG	VPSCR081705SL12	08/17/05 10:30	1.1677	0.6046	12.5491				
16	TRG	VPSCR081705SL13	08/17/05 10:32	1.0222	0.6052	12.5615				
17	TRG	VPSCR081705SL14	08/17/05 10:44	1.0246	0.6064	12.5864				

Spike and Tracer Worksheet

Page 1 of 1 Printed: 8/23/2005 11:59 AM

	Internal Work Order	ork Order		Run	Analysis Code	s Code	Q Q	Date 44.50		Technician	ician		Technic	Technician Initials	Witnes	Witness Initials
	0-60	0034			OCION	00	8/23/20	8/23/2005 11:50	3	JEAKNAKU	ARD					
	SOT	LCS & Matrix Spikes	ikes		SOT	MS	GSOT	MSD	SOT		Σ	MS		CSD	M	MSD
Isotope	Sol#	Activity dpm/g	Solution Date	Approx Addition	Volume Used (g)	Volume Used (g)	Volume Used (g)	Volume Used (g)	Known pCi	Error Estimate	Added pCi	Error Estimate	Known pCi	Error Estimate	Added pCi	Error Estimate
U-234	U-8a	35.240	8/23/2005	0.500	0.5026				7.98	0.287	00.00	0.000	0.00	00000	0.00	0.000
U-235	U-8a	1.600	8/23/2005	0.500	0.5026				0.36	0.013	0.00	0.000	0.00	0000	0.00	0.000
U-238	U-8a	34.350	8/23/2005	0.500	0.5026				7.78	0.280	0.00	0.000	0.00	0.000	0.00	0.000
		÷	Tracers							Rals	nce Drin	Balance Printer Tanes				
fraction	Isotope	\$ JoS	Activity dpm/g	Solution Date	Volume Used (g)	Approx Addition	- Caron 1-12		Tracer					CCS		
9	U-232	U-10a	20.756	8/23/2005	0.6181	0.5800			00 50 50 50							
05	U-232	U-10a	20.756	8/23/2005	0.6094	0.5800										
03	U-232	U-10a	20.756	8/23/2005	0.6044	0.5800										
90	U-232	U-10a	20.756	8/23/2005	0.5977	0.5800				· 5						
05	U-232	U-10a	20.756	8/23/2005	0.6066	0.5800			8000 B-					e C E		
90	U-232	U-10a	20.756	8/23/2005	0909'0	0.5800			\$ 1 \$ 1					0. 955	(In	
20	U-232	U-10a	20.756	8/23/2005	0.6024	0.5800			o to no fi s s							
80	U-232	U-10a	20.756	8/23/2005	0.5975	0.5800) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5							
60	U-232	U-10a	20.756	8/23/2005	0.5913	0.5800			<u> </u>							
9	U-232	U-10a	20.756	8/23/2005	0.6156	0.5800			(0) 1 10: 1 10: 1 10: 1 10: 1					Matrix Spike	Ke	
11	U-232	U-10a	20.756	8/23/2005	0.6087	0.5800			i i	90 0 10 6 10 0 50 0 40 0						
12	U-232	U-10a	20.756	8/23/2005	0.6076	0.5800				n C - 10 3 5 3 5 0 10						
13	U-232	U-10a	20.756	8/23/2005	0.6026	0.5800			Š	. m						
4	U-232	U-10a	20.756	8/23/2005	0.6007	0.5800			S)	C854						
15	U-232	U-10a	20.756	8/23/2005	0.6046	0.5800										
16	U-232	U-10a	20.756	8/23/2005	0.6052	0.5800										
17	U-232	U-10a	20.756	8/23/2005	0.6064	0.5800										
						· • • · · · · · · · · · · · · · · · · ·										
				Sec.												

Aliquot Worksheet

Printed: 8/23/2005 12:29 PM Page 1 of 1

Technician	JBARNARD	
Lab Deadline	9/9/2005	
Rot Units	grams	
Analysis Code	OSINN	
Run	7	
Work Order	05-08094	

1	Work Order	Run	Analysis Code	Rpt Units	Lab Deadline	dline			Technician		
0	05-08094	7	osinn	grams	9/9/2005	902			JBARNARD		
ĭš	Missouri Dept. of Natural Resources	Sample	Muffle Data		Dilution Data		Aliquot Data	Data	MS Aliquot Data	H-3 Solids Only	
	Client ID	Vpe	Ratio Post/Pre	No of Dils	Dii Factor	Ratio	Aliquot	Net Equiv	Aliquot	Water Anded	
	SOT	S				87	1.0000E+00	1.0000E+00			
	BLANK	MBL				35.3	1.0000E+00	1.0000E+00			
	VPSCR081705SL01	PUP					1.0128E+00	1.0128E+00			
	VPSCR081705SL01	8					1.0602E+00	1.0602E+00			
	VPSCR081705SL02	TRG					1.0031E+00	1.0031E+00		(C)	
	VPSCR081705SL03	TRG					1.0334E+00	1.0334E+00		U \$7 100 (S) (S)	
ľ	VPSCR081705SL04	TRG					1.0182E+00	1.0182E+00		e C	
	VPSCR081705SL05	TRG					1.0459E+00	1.0459E+00			
	VPSCR081705SL06	TRG					1.0206E+00	1.0206E+00		Ti Ti Ti Ti Ti Ti	
	VPSCR081705SL07	TRG				86	1.0670E+00	1.0670E+00	_		
	VPSCR081705SL08	TRG					9.9410E-01	9.9410E-01		(E)	
	VPSCR081705SL09	TRG					1.1611E+00	1.1611E+00		0 0 0 0	
	VPSCR081705SL10	TRG					1.0491E+00	1.0491E+00		. () . ()	
	VPSCR081705SL11	TRG					1.1018E+00	1.1018E+00		4 H	
Ĺ	VPSCR081705SL12	TRG					1.1677E+00	1.1677E+00		-4 / h · f /	
	VPSCR081705SL13	TRG					1.0222E+00	1.0222E+00		50 50 	
	VPSCR081705SL14	TRG					1.0246E+00	1.0246E+00		The second secon	
										0000	
										14 15 15 15	
				3.						l	
										ļ	Г
·	Comments										
										•	

991

Eberline Services - Oak Ridge Prep Logbook Version 2.0 8/1999

Rough Sample Preparation Log Book

Printed: 8/22/2005 9:47 AM Page 1 of 1

Lab Deadline
9/9/2005

Eberline	Eberline Missouri Dept. of Natural Resources	Tare (g)	Gross (g)	(g)	Net (9)	(6)	Percent	nt	Gan	Gamma	Special
Fraction	Client ID	Pan Wt	Wet Wt.	Dry Wt.	Wet Wt.	Dry Wt.	Liquid	Solid	Dry Wt.	LEPS Wt.	Info
8	VPSCR081705SL01	14.0000	427.3600	359.7600	413,3600	345.7600	16.35%	83.65%			
05	VPSCR081705SL02	13.8700	408.6400	338.6500	394.7700	324.7800	17.73%	82.27%			
90	VPSCR081705SL03	13.7500	484.5800	425.7200	470.8300	411.9700	12.50%	87.50%			
02	VPSCR081705SL04	13.9900	464.1600	401.9900	450.1700	388.0000	13.81%	86.19%			
80	VPSCR081705SL05	13.9400	567.4800	495.5300	553,5400	481.5900	13.00%	87.00%			
60	VPSCR081705SL06	13.9100	501.1000	396.9800	487.1900	383.0700	21.37%	78.63%			
9	VPSCR081705SL07	14.0200	471.6000	374.1500	457.5800	360.1300	21.30%	78.70%			
7	VPSCR081705SL08	14.0000	497.3700	396.4800	483.3700	382,4800	20.87%	79.13%			
12	VPSCR081705SL09	13.9700	501.9700	413.2200	488.0000	399,2500	18.19%	81.81%			
13	VPSCR081705SL10	14.0200	477.0700	345.6500	463.0500	331.6300	28.38%	71.62%			
14	VPSCR081705SL11	13.9500	511.8900	427.7900	497.9400	413.8400	16.89%	83.11%			
15	VPSCR081705SL12	13.8900	464.5200	384.1100	450.6300	370.2200	17.84%	82.16%			
16	VPSCR081705SL13	13.8500	461.6300	353.8000	447.7800	339.9500	24.08%	75.92%			
17	VPSCR081705SL14	13.9500	458.1300	364.2400	444.1800	350,2900	21.14%	78.86%			

	H: Hot, O: Organic Hazard, P: PCB Hazard, R: Rush, T: Other (see comments)
Comments	Special Codes

092

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:48:50

Spectral File: ND AMS_ARCHIVE_C:C_0508094A-UU\$01_UU.CNF

01 SAMPLE ID: 0508094A-UU BATCH ID: 1.000E+00 gram 2-SEP-2005 00:00 ALIQUOT: SAMPLE DATE: 030 DETECTOR NUMBER: SPIKE SAMPLE TITLE: 20.95% 2-SEP-2005 08:54 AVERAGE EFFICIENCY: ACO DATE: 92.26% RECOVERY: 10201. ELAPSED LIVE TIME: 69.00 TRACER FWHM (kev): UU-10A TRACER ID: STANDARD ROI TYPE: LAMBDA VALUE: 618. 4.65 CONFIDENCE FACTOR: 12.826 TRACER DPM AT SAMPLE DATE: 2.71 LLD CONSTANT: SOIL SAMPLE MATRIX: 24-AUG-2005 09:59 EFF CAL DATE: ENERGY CAL DATE: 24-AUG-2005 09:59 60006. BKG ELAPSED TIME: B 030 26AUG05 BKG FILENAME:

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram					
U232	5302.5	420.66	0.34	99.8	5.777E+00	7.413E-01	7.446E-02					
U-234	4761.5	583.81	1.19	99.8	8.018E+00	1.346E+00	1.069E-01					
U-235	4385.5	21.83	0.17	80.9	3.698E-01	1.679E-01	7.840E-02					
U-236	4485.2	8.83	0.17	90.1	1.343E-01	9.350E-02	7.039E-02					
U-238	4184.4	616.49	0.51	100.2	8.430E+00	1.405E+00	8.247E-02					
*****	**************											

Analyst

Reviewer

9.2.0

Date

9/2/05

Date

6500 -2.30193E-04 3.47712E+03 3.19065E+00 6000 Offset: Energy Offset Energy Slope Quad Energy DKA100:[ALPHA.ALUSR.ARCHIVE.C]C_0508094A-UU\$01_UU.CNF;1 5500 2-SEP-2005 00:00: Energy (keV) 5000 Sample ID : 01 Sample Type: UU Sample Time: 4500 2-SEP-2005 08:54: 0 02:50:01.00 0 02:50:01.00 SPIKE 030 Sample Title: Live Time : Time : Start Time: Spectrum 3500 3500 Title Real 70 20 30 squnoj

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 183: 197: 211: 225: 239: 253: 267: 281: 295: 309: 323: 337: 351: 449: 449: 449: 449: 450: 47: 491: 505: 519: 519: 519: 519: 519: 519: 519: 51	10201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10201 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 9 3 0 0 0 0 0 0 0 0 1 5 8 17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000010000100044122001000100234900000010152500000000	0000001100001584300010011102880000000158500000000	00000000001061140000100104557000010010332210000000000000000000000000	00000001000030580100401001249600101012026640000000	000000000012529010001400037520000010038930000000	000000102010037240112200101385600001000409390000000	00000001000207901200000011086010001310301400000000000000000000000000	01000001001230127000001001100100000118010000000000000	00000003012114410100000010894300000101374100000000	000001000000242100001100000403000000111260010000000	000100030083140000010063100001790100000000000000000000000000000	0 0 0 0 0 0 1 2 0 0 0 1 5 10 23 9 1 3 0 2 1 0 1 1 1 2 3 12 23 0 0 0 0 0 0 0 2 4 11 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
477: 491: 505: 519: 533: 547: 561: 575: 589: 603: 617: 631: 645: 659: 673: 687: 701: 715: 729: 743: 757: 771: 785: 799: 813: 827: 841: 855: 869: 883:	0 0 1 0 0 1 5 10 21 0 0 0	0 0 0 0 0 0 1 5 8 1 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 1 1 5 0 0 0 0 0 0 0 0 0 0 0	000001585000000000000000000000000000000	0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0101202664000000000000000000000000000000	0 0 1 0 0 3 8 9 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 4 0 9 13 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 3 10 3 10 0 0 0 0 0 0 0 0 0 0 0 0 0	000011801000000000000000000000000000000	0 1 1 3 7 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 1 7 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 2 4 11 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
897: 911: 925: 939: 953: 967: 981: 995: 1009:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 1 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:48:46.58

Acquisition Start: 2-SEP-2005 08:54:53.01 Real Time: 0 02:50:01.00 Detector ID: 30

Live Time: 0 02:50:01.00

Batch Id: 0508094A-UU Sample Id: 01

Sample Type: UU

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	4172.28 4376.38 4484.03 4754.16 5289.88	617 22 9 585 421	01 0 0	11.12 3.71 63.68	221.41 287.82 323.11 412.52 593.57	263 307 361	42 29 81	6.05E-02 2.16E-03 8.82E-04 5.73E-02 4.13E-02	21.3 33.3 4.1	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:48:48.73

Acquisition Start: 26-AUG-2005 12:01:25.01 Real Time: 0 16:40:06.00

Live Time: 0 16:40:06.00

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 0 3 0 4 0	4135.46 4363.17 4477.60 4719.56 5259.03	3 1 1 7 2	0 0	0.00	401.00	263 307 361	42 29 81	5.00E-05 57.7 1.67E-05100.0 1.67E-05100.0 1.17E-04 37.8 3.33E-05 70.7	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:48:49.04

Pk It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 (3 (4 (4172.28* 4376.38* 4484.03* 4754.16* 5289.88*	616 22 9 584 421	0 72.05 0111.12 0 3.71 0 63.68 0 69.00	287.82 323.11 412.52	263 307 361	42 29 81	6.04E-02 2.14E-03 8.66E-04 5.72E-02 4.12E-02	21.5 34.0 4.1	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 12:48:50

Configuration : MCA0:[AMSCOUNT]00009067\$1

: ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Analyses by

Sample title : SPIKE

: 2-SEP-2005 00:00:00 Acquisition date : 2-SEP-2005 08:54:53 Sample date

Sample quantity : 1.0000 gram : 01 Sample ID

Sample geometry : UU Sample type

Detector name : 030 Detector geometry:

0.0% Elapsed real time: 0 02:50:01.00 Elapsed live time: 0 02:50:01.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

Post-NID Peak Search Report

It	Energy	Area FWHM C	hannel Lef	t Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0 0 0	4172.28* 4376.38* 4484.03* 4754.16* 5289.88*	22111.12 9 3.71 584 63.68	221.41 16 287.82 26 323.11 30 412.52 36 593.57 54	3 42 43.0 7 29 68.1 1 81 8.3		U-238 U-235 U-236 U-234 U232	7.78 0.341 0.124 7.40 5.33

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:49:04

BATCH ID:	0508094A-UU	*	SAMPLE ID:	02
SAMPLE DATE:	2-SEP-2005 00:00	*	ALIQUOT: 1.000E+00	gram
SAMPLE TITLE:	BLANK	*	DETECTOR NUMBER:	031
ACQ DATE:	2-SEP-2005 08:55	*	AVERAGE EFFICIENCY:	20.31%
ELAPSED LIVE TIME	_ :-	*	RECOVERY:	93.12%
TRACER ID:	UU-10A	*	TRACER FWHM (kev):	27.55
LAMBDA VALUE:	609.	*	ROI TYPE: ST	ANDARD
TRACER DPM AT SAM		*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
	24-AUG-2005 09:59	*	EFF CAL DATE: 24-AUG-2005	09:59
	B 031 26AUG05	*	BKG ELAPSED TIME:	60004.
BKG FILENAME:	B_031_20A0G03		D1(0 D211 0 - 1 - 1 - 1 - 1	

NUCLIDE ACTIVITY SUMMARY

ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
5302.5	405.83	0.17	99.8	5.696E+00	7.388E-01	6.494E-02
4761.5	12.98	1.02	99.8	1.822E-01	1.090E-01	1.039E-01
4385.5	4.00	0.00	80.9	6.926E-02	7.000E-02	4.692E-02
4485.2	0.83	0.17	90.1	1.290E-02	3.160E-02	7.194E-02
4184.4	5.49	0.51	100.2	7.672E-02	6.988E-02	8.428E-02
	5302.5 4761.5 4385.5 4485.2	AREA 5302.5 405.83 4761.5 12.98 4385.5 4.00 4485.2 0.83	AREA 5302.5 405.83 0.17 4761.5 12.98 1.02 4385.5 4.00 0.00 4485.2 0.83 0.17	AREA 5302.5 405.83 0.17 99.8 4761.5 12.98 1.02 99.8 4385.5 4.00 0.00 80.9 4485.2 0.83 0.17 90.1	AREA pCi/ gram 5302.5 405.83 0.17 99.8 5.696E+00 4761.5 12.98 1.02 99.8 1.822E-01 4385.5 4.00 0.00 80.9 6.926E-02 4485.2 0.83 0.17 90.1 1.290E-02	AREA PCi/ gram 2-SIGMA 5302.5 405.83 0.17 99.8 5.696E+00 7.388E-01 4761.5 12.98 1.02 99.8 1.822E-01 1.090E-01 4385.5 4.00 0.00 80.9 6.926E-02 7.000E-02 4485.2 0.83 0.17 90.1 1.290E-02 3.160E-02

-1,71261E-04 3,50727E+03 3,02669E+00 Energy Offset: Energy Slope Energy Quad DKA100:[ALPHA.ALUSR.ARCHIVE.R]R_0508094A-UU\$02_UU.CNF;1 2-SEP-2005 00:00: 02 Type: UU Time: .. OI Sample Sample Sample 2-SEP-2005 08:55: 0 02:50:01.00 0 02:50:01.00 BLANK 031 Sample Title: Start Time: Time Spectrum Title Live Real 10 20 30 squnoj

6000

5500

5000 Energy (keV)

4000

Channel														
1:	10201	10201	0	0	0	0	0	0	0	0 0	0 1	1 0	0 0	0 0
15: 29:	0 0	0 0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0
43: 57:	0 0	0 0	0 1	0 0	0 0	0 0	0	0	0 0	0 0	0 0	0	0	0
71:	0	0	ΰ	0	0	0	0	0	0	0	0	0	0 0	0 0
85:	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0	0 0	0 0	0 0	0 0	0	Ö
99: 113:	0	0	Ö	0	0	0	0	0	0	0	0	0	0 0	0 0
127:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0
141: 155:	0 0	0	0	0	0	0	Ō	0	0	0	0	0	0	0
169:	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	2 1	0 1	0	0 0	0 0
183: 197:	0 0	0 0	0 0	0	0	Ö	Ö	0	0	0	Ó	0	0	0
211:	0	0	0	0	0 0	1 0	0 0	0 0	0 0	0 0	0 0	1 0	0 0	0 0
225: 239:	0 0	0 0	0 0	0	0	0	Ó	0	Ō	0	0	0	0	0
253:	0	0	0	0 0	0 1	0 1	0 0	0 0	1 0	0 0	0 0	0 0	0 0	0 1
267: 281:	0 0	0 0	0 0	0	0	Ö	0	0	0	0	0	0	0	0
295:	0	0	0	1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
309: 323:	0 0	0 0	0 0	0 0	0	1	0	0	0	0	0	0	0	0
337:	0	0	0	0	0	1	0 0	0 0	0 0	0 0	0 0	0 0	0 2	0 0
351: 365:	0	1 1	0 0	0 0	0 0	0 0	0	0	0	0	1	0	0	1
379:	0	0	1	0	0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0
393: 407:	1 0	0 0	0 0	0 1	1 1	0	0	1	0	0	0	Ó	0	0
421:	0	1	0	1	0	0 0	1 0	2 0	0 0	0 0	0 0	0 0	0 0	0 0
435: 449:	0 0	0 0	0 0	0 0	0 0	3	0	0	0	0	0	0	0	0
463:	0	0	0	0	0	0 0	0 0	0 0	0 0	1 0	0 1	0 1	0 0	0 0
477: 491:	0	0 0	0 0	0 0	0 0	0	0	1	0	0	0	0	0	0
505:	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	1 1	1 0
519: 5 33:	0	0 0	0 0	0 0	1 0	0 0	0 0	0	0	2	0	0	0	0
547:	0	0	0	1	0	0	0	0 0	0 1	0 1	2 1	2 0	1 0	0 2
561: 575:	0 2	0 2	1 1	0 3	0 0	1 2	0 1	2	Ö	4	3	3	2	2
589:	6	4	8	8	10	7	10	6 13	8 16	13 17	9 19	4 30	6 26	8 19
603: 617:	6 19	8 10	8 14	9 3	14 0	12 0	22 0	0	0	0	0	0	0	0
631:	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0
645: 659:	0 0	0	0	0	0 0	0	Ö	0	0	0	0	Ö	Ö	0
673:	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
687: 701:	0 0	0 0	0 0	0 0	0 0	0	Ö	Ó	0	0	0	0	0	0
715:	0	0	0	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
729: 743:	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0
757:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
771: 785:	0 0	0	0	0	0	0	0	0	0	Ö	0	1	0	0 0
799:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
813: 827:	0 0	0	0	Ö	0	0	0	0	0	0	0	0	0	0
841:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0
855: 869:	0 0	0	0	Ö	0	0	0	0	0	0	0	0	0	0
883:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0 0 0
897: 911:	0 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
925: 939:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0
953:	0	0	0	Ō	0	0	0	Ō	0	0	0	0	0 0	0
967: 981:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	
995:	0	Ö	0	0	0	0	0	0	0	0	0	0	0 0	0 0 0
1009:	0	0 0	0	0	0	0	0	0	0	0	0	0	U	U
1023:	U	U											181	ā

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:48:59.18

Acquisition Start: 2-SEP-2005 08:55:05.01 Real Time: 0 02:50:01.00 Detector ID: 31

Live Time: 0 02:50:01.00 Batch Id: 0508094A-UU

Sample Id: 02

Sample Type: UU

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 3 4	0 0 0	4095.40 4342.05 4481.60 4709.32 5276.04	6 4 1 14 406	0 0 0	84.37 3.03 4.45	196.50 280.25 328.00 406.50 605.11	266 312 369	44 30 84	5.88E-04 40.8 3.92E-04 50.0 9.80E-05100.0 1.37E-03 26.7 3.98E-02 5.0	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:49:01.95

Acquisition Start: 26-AUG-2005 12:01:27.01 Real Time: 0 16:40:04.00

Live Time: 0 16:40:04.00

Pk	It	Energy	Area	Bkgnd :	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
1	0	4135.32	3	021	1.87	210.00			5.00E-05 57.7	
		4363.28	0	0	0.00	287.50			0.00E+00 0.0	
3	0	4477.22	1	0	3.03	326.50			1.67E-05100.0	
4	0	4720.86	6	013	3.17	410.50			1.00E-04 40.8	
5	0	5260.21	1	0	0.00	599.50	561	78	1.67E-05100.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:49:02.26

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 0 3 0 4 0	4095.40* 4342.05* 4481.60* 4709.32* 5276.04*	5 4 1 13 406	0 0 0	84.37 3.03	328.00 406.50	266 312 369	44 30 84	5.38E-04 44.9 3.92E-04 50.0 8.14E-05122.2 1.27E-03 29.0 3.98E-02 5.0	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 12:49:03

Configuration : MCA0:[AMSCOUNT]00009067\$1

: ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Analyses by

: BLANK Sample title

: 2-SEP-2005 00:00:00 Acquisition date : 2-SEP-2005 08:55:05 Sample date

Sample quantity : 1.0000 gram : 02 Sample ID

Sample geometry : UU Sample type

Detector name : 031 Detector geometry:

Elapsed real time: 0 02:50:01.00 0.0% Elapsed live time: 0 02:50:01.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes

Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

Post-NID Peak Search Report

It	Energy	Area	FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0	4095.40* 4342.05* 4481.60* 4709.32* 5276.04*	4 1 13	3.03 84.37 3.03 4.45 27.55	196.50 280.25 328.00 406.50 605.11		93 89.9 44100.0 30244.4 84 58.0 78 9.9		U-238 U-235 U-236 U-234 U232	7.145E-02 6.449E-02 1.202E-02 0.170 5.30

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:49:13

Spectral File: ND_AMS_ARCHIVE_S:S_0508094A-UU\$03_UU.CNF

03 SAMPLE ID: 0508094A-UU BATCH ID: 1.013E+00 gram ALIQUOT: SAMPLE DATE: 17-AUG-2005 00:00 032 DETECTOR NUMBER: SAMPLE TITLE: VPSCR081705SL01 19.42% AVERAGE EFFICIENCY: 2-SEP-2005 08:55 ACO DATE: 101.00% RECOVERY: 10205. ELAPSED LIVE TIME: 72.94 TRACER FWHM (kev): UU-10A TRACER ID: STANDARD ROI TYPE: 604. LAMBDA VALUE: 4.65 CONFIDENCE FACTOR: TRACER DPM AT SAMPLE DATE: 12.547 2.71 LLD CONSTANT: SOIL SAMPLE MATRIX: 24-AUG-2005 09:59 EFF CAL DATE: ENERGY CAL DATE: 24-AUG-2005 09:59 60001. BKG ELAPSED TIME: B 032 26AUG05 BKG FILENAME:

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
U232	5302.5	417.49	0.51	99.8	5.580E+00	7.183E-01	8.058E-02
U-234	4761.5	70.66	0.34	99.8	9.440E-01	2.643E-01	7.244E-02
U-235	4385.5	4.49	0.51	80.9	7.400E-02	7.513E-02	9.941E-02
U-236	4485.2	-0.17	0.17	90.1	-2.517E-03	5.047E-03	6.848E-02
U-238	4184.4	49.83	0.17	100.2	6.629E-01	2.117E-01	6.156E-02

Muyachen Analyst

9.2.0)

Reviewer

9/2/05

Date

DKA100;[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$03_UU.CNF;1 032 Spectrum Title

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 239: 225: 239: 253: 267: 281: 295: 309: 323: 365: 379: 421: 435: 449: 449: 505: 519: 519: 519: 519: 519: 519: 519: 51	10205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000001200000000000000000000000	000000000000000000000000000000000000000	00000000110001100000000000000000000166000000	000000001000012000000000123000000001503000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000001024000000000000000000000000	000000000000014000000000025301000000051200000000	00000000000000130000000010311000000010060300000000	00000000002101000000001110000000180300000000	0000000100000221002000000100000003015300000000
463: 477: 491: 505: 519: 533: 547: 561: 575: 589: 603: 617: 631: 645: 659: 673: 687: 701:	0 0 0 0 0 0 0 0 0 4 10 6 0	1 0 0 0 0 0 0 7 6 13 2 0 0 0	0 0 0 0 0 1 1 2 16 15 4 0 0 0	0 0 1 0 0 1 0 0 5 17 2 0 0 0	0 0 0 0 0 0 0 0 1 6 6 0 0	0 0 0 0 0 1 5 10 13 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 3 1 5 15 0 0 0	0 0 0 0 1 1 1 2 12 16 0 0	0 0 0 1 0 1 2 12 27 0 0 0	0 0 0 0 0 0 5 11 20 0 0	0 0 0 1 0 6 10 13 0 0	0 0 0 0 0 1 8 10 13 0 0	0 0 0 0 3 0 1 5 13 10 0 0
715: 729: 743: 757: 785: 799: 813: 827: 841: 855: 869: 8897: 911: 925: 939: 953: 967: 981: 995: 1009:		000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000							010000000000000000000000000000000000000	

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:49:09.82

Acquisition Start: 2-SEP-2005 08:55:26.01 Detector ID: 32

Real Time: 0 02:50:05.00

Live Time: 0 02:50:05.00 Batch Id: 0508094A-UU Sample Id: 03

Sample Type: UU

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0	4177.01 4355.58 4476.93 4756.62 5299.50	50 5 0 71 418	0 0 0	3.15 0.00 47.07	226.50 285.00 325.00 417.96 601.57	267 311 366	42 29 81	4.90E-03 4.90E-04 0.00E+00 6.96E-03 4.10E-02	44.7 0.0 11.9	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:49:11.33

Acquisition Start: 26-AUG-2005 12:01:30.01

Real Time: 0 16:40:01.00 Live Time: 0 16:40:01.00

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
1	0	4135.62	1	0	3.15	213.00	169	89	1.67E-05100.0	
2	0	4363.18	3	0	40.93	287.50	267	42	5.00E-05 57.7	
3	0	4476.93	1	0	3.15	325.00	311	29	1.67E-05100.0	
4	0	4720.82	2	0	9.45	406.00	366	81	3.33E-05 70.7	
5	Ω	5259.80			107.06	588.00	551	75	5.00E-05 57.7	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:49:11.65

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Er	r Fit
2 3 4	0 0	4177.01* 4355.58* 4476.93* 4756.62* 5299.50*	50 4 0 71 417	0 0 0	3.15 0.00 47.07	226.50 285.00 325.00 417.96 601.57	267 311 366	42 4 29-1 81	4.88E-03 14. 4.40E-04 50. 1.67E-05100. 6.92E-03 11. 4.09E-02 4.	2 0 9

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 12:49:12

Configuration : MCA0:[AMSCOUNT]00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL01

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:55:26

Sample ID : 03 Sample quantity : 1.0128 gram

Sample type : UU Sample geometry :

Detector name : 032 Detector geometry:

Energy tolerance: 100.00 keV Half life ratio: 8.00 Errors propagated: Yes Systematic Error: 3.00 % Efficiency type: Average value Efficiencies at: Peak Energy

Abundance limit : 75.00

Post-NID Peak Search Report

Ιt	Energy	Area	FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
_	4177.01* 4355.58* 4476.93* 4756.62* 5299.50*	4 0 71	10.63 3.15 0.00 47.07 72.94	226.50 285.00 325.00 417.96 601.57		89 28.4 42100.5 29200.0 81 23.9 75 9.8		U-238 U-235 U-236 U-234 U232	0.670 7.474E-02 -2.542E-03 0.953 5.64

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:49:21

*

BATCH ID: 0508094A-UU SAMPLE DATE: 17-AUG-2005 00:00 SAMPLE TITLE: VPSCR081705SL01 ACQ DATE: 2-SEP-2005 09:45 ELAPSED LIVE TIME: 10200. TRACER ID: UU-10A LAMBDA VALUE: 598. TRACER DPM AT SAMPLE DATE: 12.408 SAMPLE MATRIX: SOIL ENERGY CAL DATE: 25-AUG-2005 04:28	* * * * * * * * *	CONFIDENCE FACTOR: LLD CONSTANT: EFF CAL DATE: 25-AUG-2005	
ENERGY CAL DATE: 25-AUG-2005 04:28	*	EFF CAL DATE: 25-AUG-2005	04:28
BKG FILENAME: B_033_26AUG05		BKG ELAPSED TIME:	60000.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
U232	5302.5	400.83	0.17	99.8	5.272E+00	6.859E-01	6.083E-02
U-234	4761.5	66.66	0.34	99.8	8.763E-01	2.511E-01	7.127E-02
U-235	4385.5	6.00	0.00	80.9	9.730E-02	8.073E-02	4.395E-02
U-236	4485.2	0.00	0.00	90.1	0.000E+00	0.000E+00	3.946E-02
U-238	4184.4	68.00	0.00	100.2	8.901E-01	2.527E-01	3.547E-02

Analyst

+ | -

-

Date

Reviewer

4/2/05

Date

-1.93467E-04 3.44527E+03 3.13024E+00 6000 Energy Offset: Energy Slope Quad Energy DKA100: [ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$04_UU.CNF;1 5500 Sample Time: 17-AUG-2005 00:00 Energy (keV) Sample ID : 04 Sample Type: UU 2-SEP-2005 09:45: 0 02:50:00.30 0 02:50:00.00 VPSCR081705SL01 033 Sample Title: Time : Real Time : Start Time: 3500 Spectrum Title Live etnuoj e 20

Channel										0	0	0	0	0
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 183: 197: 211: 225: 239: 253: 267: 281: 295: 309: 323: 337: 365: 379: 365: 449: 449: 443: 449: 443: 450: 505: 519: 533: 547: 561: 575: 589: 603: 645: 673: 687: 701: 771: 785: 771: 785: 771: 785: 771: 785: 799: 813: 827: 841: 855: 849: 925: 939: 947: 948: 953: 953: 967: 973: 973: 973: 973: 973: 973: 973: 97	0000000010000002200000110032100000012186000000000000000000000000000	000000000000000100100010000000000000000	0010000001000010220000000000105000000000	000000000000000140000000011013000000103037800000000000000	000000010000000300010000001110000100010	000000000000001400000000000000000000000	0000000000000112001000000001200000011221400000000	0000000000001010200000000000000000011033890000000010000000000	0000000000000000000011000000011100100000	000000000000000000000000000000000000000	0010000000001120000000000001200000016240000000000	000000000000137000100000023100000000765000000000000000000000000	000000000013300000000100120001010003511400000000000000000000000000	0000000000010010000000100122200100100100

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:49:17.94

Detector ID: 33 Acquisition Start: 2-SEP-2005 09:45:09.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.30

Batch Id: 0508094A-UU Sample Id: 04

Sample Type: UU

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	4184.09 4377.98 4478.19 4757.67 5293.82	68 6 0 67 401	0 0 0	97.04 0.00 75.85	239.57 303.67 337.00 430.73 613.84	278 323 378	42 29 82	6.67E-03 5.88E-04 0.00E+00 6.57E-03 3.93E-02	40.8 0.0 12.2	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:49:19.41

Acquisition Start: 26-AUG-2005 12:01:33.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.20

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4135.21	0	0	0.00	223.50	179	90	0.00E+00	0.0	
2	0	4362.41	0	0	0.00	298.50	278	42	0.00E+00	0.0	
3	0	4478.19	0	0	0.00	337.00	323	29	0.00E+00	0.0	
4	0	4721.39	2	01	12.69	418.50	378	82	3.33E-05	70.7	
5	0	5259.56	1	0	3.13	602.00	564	77	1.67E-051	100.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:49:19.72

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	4184.09* 4377.98* 4478.19* 4757.67* 5293.82*	68 6 0 67 401	0 0 0	97.04 0.00 75.85	239.57 303.67 337.00 430.73 613.84	278 323 378	42 29 82	6.67E-03 5.88E-04 0.00E+00 6.54E-03 3.93E-02	40.8 0.0 12.3	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 12:49:20

: MCA0: [AMSCOUNT] 00009067\$1 Configuration

: ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Analyses by

: VPSCR081705SL01 Sample title

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:45:09 Sample date

Sample quantity : 1.0602 gram Sample ID : 04

Sample geometry : UU Sample type

Detector geometry: Detector name : 033

Elapsed real time: 0 02:50:00.30 0.0% Elapsed live time: 0 02:50:00.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV 3.00 % Systematic Error : Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

It	Energy	Area FWHM	M Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0 0 0	4184.09* 4377.98* 4478.19* 4757.67* 5293.82*	68 28.55 6 97.04 0 0.00 67 75.85 401 65.19	337.00 430.73	179 278 323 378 564	90 24.3 42 81.6 29 0.0 82 24.6 77 10.0		U-238 U-235 U-236 U-234 U232	0.796 8.699E-02 0.000E+00 0.783 4.71

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:49:31

Spectral File: ND AMS ARCHIVE S:S 0508094A-UU\$05 UU.CNF

05 SAMPLE ID: 0508094A-UU BATCH ID: 1.003E+00 gram ALIQUOT: SAMPLE DATE: 17-AUG-2005 00:00 034 DETECTOR NUMBER: VPSCR081705SL02 SAMPLE TITLE: 20.21% AVERAGE EFFICIENCY: 2-SEP-2005 09:45 ACO DATE: 96.79% RECOVERY: 10200. ELAPSED LIVE TIME: 80.12 TRACER FWHM (kev): UU-10A TRACER ID: STANDARD ROI TYPE: 607. LAMBDA VALUE: 4.65 TRACER DPM AT SAMPLE DATE: 12.592 CONFIDENCE FACTOR: 2.71 LLD CONSTANT: SOIL SAMPLE MATRIX: 25-AUG-2005 04:28 ENERGY CAL DATE: 25-AUG-2005 04:28 EFF CAL DATE: 60000. BKG ELAPSED TIME: B 034 26AUG05 BKG FILENAME:

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
U232	5302.5	417.66	0.34	99.8	5.655E+00	7.273E-01	7.337E-02
U-234	4761.5	72.00	0.00	99.8	9.744E-01	2.703E-01	3.667E-02
U-235	4385.5	7.00	0.00	80.9	1.169E-01	8.998E-02	4.524E-02
U-236	4485.2	2.00	0.00	90.1	2.998E-02	4.262E-02	4.062E-02
U-238	4184.4	69.66	0.34	100.2	9.387E-01	2.641E-01	7.305E-02
*****	****	*****	****	*****	*****	****	*****

*** Tracer FWHM > 80.0 Kev

-1.48111E-04 3,44466E+03 3,08962E+00 0009 Energy Offset: Energy Slope Energy Quad DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$05_UU.CNF;1 5500 Sample Time: 17-AUG-2005 00:00 Energy (keV) \exists Sample ID : Sample Type: Start Time: 2-SEP-2005 09:45: Real Time: 0 02:50:00.30 Live Time: 0 02:50:00.00 VPSCR081705SL02 034 Sample Title: 3500 Spectrum Title 0 equnoj 20

Channel														
1: 15:	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0	0	0	0	0	0	0
29:	0	0	0	0	0	0	0	0 0	0	0 0	0 0	0 0	0 0	0 0
43: 57:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	Ö	Ö	Ŏ	ŏ
71:	Ö	0	ŏ	Ŏ	ŏ	Ö	Ö	0	0	0	0	0	1	0
85:	0	0	0	0	0	0	0	0 0	0	0 0	0 0	0	0 0	0 0
99: 113:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	Ö	ŏ	ŏ	Ö
127:	0	1	Ö	Õ	Ö	Ö	0	0	0	0	0	0	0	0
141:	0	0	0	1	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
155: 169:	0 0	0 0	0 0	0 0	0 0	0	0	0	0	Ö	ŏ	Ŏ	0	0
183:	ŏ	Ŏ	0	0	0	0	0	0	0	0	0	0 0	0 0	0
197:	1	0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	1	0	ő
211: 225:	0 0	0 0	2	1	1	3	1	ŏ	Ö	5	3	0	2	2
239:	3	0	1	2	1	1	1	0	4	2	6 0	3 1	7 0	3 0
253: 267:	3 0	3 0	1 0	1 0	2 0	2 0	0 0	0 0	0 0	0 0	0	Ó	Ö	ő
281:	0	0	0	Ö	ő	ŏ	Ŏ	0	1	0	0	0	0	0
295:	0	0	0	0	0	1	0	0	0 0	0 1	0 1	0 1	0 0	0 0
309: 323:	0 0	0 0	0 0	0 0	0 0	0 0	1 0	1 0	0	Ö	Ó	ò	1	0
337:	Ö	Ö	Ö	1	Ó	Ō	0	Ō	0	0	0	0	0	0 0
351:	0	0	0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0	0 0	0
365: 379:	0 0	0 0	0 0	0	0	1	ò	Ö	1	Ŏ	0	0	0	0
393:	0	1	0	0	0	0	1	0	1	0	0 0	0 0	2 1	0 1
407:	1 1	0 0	1 3	1 4	1 0	0 5	0 1	0 4	0 1	1 1	2	2	1	ò
421: 435:	4	1	1	1	. 1	4	4	2	0	1	5	3	0	4
449:	2	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0
463: 477:	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	Ö	ŏ	0	0
491:	Ö	Ö	Ō	0	0	0	0	1	0	0	0	0	0 0	0 0
505:	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 1	0	0
519: 533:	0 0	0	0	Ö	0	Ö	ŏ	0	0	0	Ö	0	0	0
547:	0	0	0	0	0	0	0	0 0	0 0	1 0	0 1	1 0	0 0	0 3
561: 575:	0 1	1 0	1 0	0 0	0 0	0 1	0 0	1	1	Ö	i	1	ŏ	2
589:	ó	0	1	2	3	1	0	1	3	5	4	5	4	4 11
603:	3	3	6 11	11 7	7 14	8 17	6 19	10 20	7 21	9 18	10 21	6 19	12 12	12
617: 631:	10 19	12 9	7	8	3	3	2	0	0	0	0	0	0	0
645:	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
659: 673:	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	Ö	Ö	0	0
687:	Ö	Ŏ	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0
701:	0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0	0
715: 729:	0 0	0 0	0	0	0	0	0	Ö	ŏ	0	0	0	0	0 0
743:	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0
757: 771:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	Ö	Ö	Ö	ő
785:	0	0	Ö	ŏ	0	0	0	0	0	0	0	0	0	0
799:	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
813: 827:	0 0	0 0	0 0	0 0	0 0	0	0	0	Õ	ŏ	0	0	0	0
841:	Ŏ	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0
855:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0 0 0 0 0 0 0 0
869: 883:	0 0	0	0	0	0	0	0	Ō	0	0	0	0	0	0
897:	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
911: 925:	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	ŏ
939:	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
953:	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0
967: 981:	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	Õ
995:	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0 0 0 0
1009: 1023:	0 0	0 0	0	0	0	0	0	0	U	U	U	J	Ü	v
1023:	Ū	J											111	ere,

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:49:26.42

Acquisition Start: 2-SEP-2005 09:45:29.01 Real Time: 0 02:50:00.30 Detector ID: 34

Live Time: 0 02:50:00.00

Sample Id: 05 0508094A-UU Batch Id:

Sample Type: UU

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
		4187.73 4391.21	70 7			243.34 311.00			6.86E-03 6.86E-04		
3	0	4470.54	2	0	18.54	337.50			1.96E-04		
4	0	4744.78	72	0	80.05	429.65			7.06E-03		
5	0	5298.14	418	0	80.12	618.23	567	76	4.10E-02	4.9	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:49:28.70

Acquisition Start: 26-AUG-2005 12:01:36.01

Real Time: 0 16:40:00.10 Live Time: 0 16:40:00.00

Pk	It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0	4135.35 4362.72 4478.01 4720.62 5258.21	2 0 0 0 2	0 0.00 0 0.00 0 0.00	226.00 301.50 340.00 421.50 604.50	281 326 381	42 29 82	3.33E-05 0.00E+00 0.00E+00 0.00E+00 3.33E-05	0.0 0.0 0.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:49:29.02

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	4187.73* 4391.21* 4470.54* 4744.78* 5298.14*	70 7 2 72 418	0 0 0	98.87 18.54 80.05	243.34 311.00 337.50 429.65 618.23	281 326 381	42 29 82	6.83E-03 6.86E-04 1.96E-04 7.06E-03 4.09E-02	37.8 70.7 11.8	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 12:49:29

Configuration : MCA0:[AMSCOUNT]00009067\$1

: ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Analyses by

: VPSCR081705SL02 Sample title

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:45:29 Sample date

Sample quantity : 1.0031 gram Sample ID : 05

Sample geometry : UU Sample type

Detector name : 034 Detector geometry:

Elapsed real time: 0 02:50:00.30 0.0% Elapsed live time: 0 02:50:00.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

It	Energy	Area	FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0 0 0	4187.73* 4391.21* 4470.54* 4744.78* 5298.14*	7 2 72	98.87 18.54 80.05	243.34 311.00 337.50 429.65 618.23	281 326 381	29141.4 82 23.6		U-238 U-235 U-236 U-234 U232	0.908 0.113 2.902E-02 0.943 5.47

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:49:40

B_035_26AUG05

BATCH ID:	0508094A-UU	*	SAMPLE ID:	06
	7-AUG-2005 00:00	*	ALIQUOT: 1.0	033E+00 gram
SAMPLE TITLE:	VPSCR081705SL03	*	DETECTOR NUMBER:	035
	2-SEP-2005 09:45	*	AVERAGE EFFICIENCY	: 20.51%
ELAPSED LIVE TIME:		*	RECOVERY:	87.15%
TRACER ID:	UU-10A	*	TRACER FWHM (kev):	66.53
	606.	*	ROI TYPE:	STANDARD
LAMBDA VALUE:	* *	*	CONFIDENCE FACTOR:	4.65
TRACER DPM AT SAME		*	LLD CONSTANT:	2.71
SAMPLE MATRIX:	SOIL		EFF CAL DATE: 25-	- • · -
ENERGY CAL DATE: 2		*		AUG-2003 04.20 60000.
DEC ETTEMAME.	B 035 26AHG05	*	BKG ELAPSED TIME:	60000.

BKG ELAPSED TIME:

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
U232	5302.5	381.32	0.68	99.8	5.483E+00	7.246E-01	9.407E-02
U-234	4761.5	63.49	0.51	99.8	9.126E-01	2.675E-01	8.669E-02
U-235	4385.5	4.66	0.34	80.9	8.263E-02	8.071E-02	9.613E-02
U-236	4485.2	1.00	0.00	90.1	1.592E-02	3.193E-02	4.315E-02
U-238	4184.4	70.00	0.00	100.2	1.002E+00	2.824E-01	3.879E-02

BKG FILENAME:

06

-1,80495E-04 3,42698E+03 3,10189E+00 0009 Energy Offset: Slope Quad Energy Energy DKA100: [ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$06_UU.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 3 Time: Type: Sample Sample Sample 4500 035 VPSCR081705SL03 2-SEP-2005 09:45: 0 02:50:00.30 0 02:50:00.00 Sample Title: Live Time : Start Time: Real Time : 3500 Spectrum Title 0 10 20 squnog

Channel														
1:	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 1	0 0
15: 29:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	Ö	Ö
43:	0	ő	Ö	ŏ	ő	ŏ	Ŏ	Ö	Ö	0	0	0	0	0
57:	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
71:	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0
85: 99:	0 0	0 0	0 0	0 0	0 0	1	0	0	0	Ö	Ö	Ö	Ö	ŏ
113:	ő	ŏ	ŏ	ŏ	ŏ	Ö	Ö	Ö	1	Ō	0	0	0	0
127:	0	1	0	0	0	0	0	0	0	0	0	0	1	0 0
141:	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
155: 169:	0 0	0 0	0 0	0 1	0	0	0	0	0	0	Ö	Ö	1	Ŏ
183:	ŏ	Ŏ	ŏ	Ö	Ŏ	Ö	Ö	Ō	1	0	0	0	0	0
197:	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
211:	0	0	0 0	0 0	0 2	0 2	0 0	0 0	0 1	0 1	1 1	0 0	1	0
225: 239:	2 2	0 3	2	2	3	1	1	1	i	i	4	Ĭ	2	4
253:	2	2	4	4	4	0	4	2	1	3	1	1	2	0
267:	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0 0
281: 295:	1 0	0 0	0 0	0 0	0 0	1 0	0 0	0 0	0 1	0 0	1	0	0	ő
309:	0	0	0	1	0	Ô	Ö	ŏ	ò	Ö	ò	Ö	0	0
323:	0	0	0	0	0	1	0	0	0	0	0	0	0	0
337:	0	0	0	1	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
351: 365:	0 1	0 0	0 1	0 0	0 0	0 0	0	0	0	0	0	Ö	Ö	ŏ
379:	Ó	Ö	Ó	0	Ö	Ö	Ö	Ŏ	Ö	1	Ō	0	0	0
393:	1	0	0	1	0	0	0	0	0	0	0	0	0	0
407:	0	0	0	0	3	1	0 1	1 0	0 0	0 2	1 1	0 0	1 0	1 2
421: 435:	1 2	1 0	0 0	0 2	0 3	0 2	1	0	4	1	3	1	2	2
449:	Ō	1	. 3	2	1	3	3	6	1	0	1	0	1	0
463:	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
477: 491:	0 0	0 0	0 0	0 0	0 1	0 0	0 1	0 0	0 1	0 0	0 0	0 0	2	Ö
505:	0	0	0	0	Ó	2	Ó	Õ	ò	ŏ	1	Ö	Ō	0
519:	Ö	0	Ō	0	0	0	0	0	0	0	0	0	1	0
533:	0	0	1	0	1	0	0	0 0	0 0	0 0	0 1	1	1 0	0
547: 561:	0 0	0 0	0 2	0 0	0 1	0	0 0	0	1	0	1	ò	Ŏ	ŏ
575:	2	Ö	1	Ö	Ö	Ŏ	Ö	Ö	Ô	1	0	1	1	0
589:	0	0	0	0	1	0	1	1	2	1	0	0	1	1 11
603:	1 11	1 10	1	4 12	1 15	2 7	5 5	6 6	3 14	5 7	2 6	5 7	6 12	5
617: 631:	12	13	6 12	13	13	15	21	13	18	25	20	8	2	3
645:	3	1	0	0	0	0	0	0	0	0	0	0	0	0
659:	0	0	0	0	0	0	0	0	0 0	0 0	0 0	1 0	0 0	0 0
673: 687:	0 0	0	0	0	0 0	0 0	0 0	0	0	0	0	Ö	0	ő
701:	ŏ	Ö	ŏ	Ö	Ŏ	ŏ	Ö	0	Ō	0	0	0	0	0
715:	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0
729: 743:	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	ŏ
757:	Ö	0	Ö	ő	ŏ	ŏ	Ŏ	Ö	Ö	Ō	0	0	0	0
771:	0	0	0	0	0	0	0	0	1	0	0	0	0	0
785:	0	0	0	0	0 0	0 0	1 0	0 0	0	0 0	0 0	0 0	0 0	0 0
799: 813:	1 0	0	0 0	0 0	0	0	0	0	0	0	Ö	Ö	Ŏ	0
827:	ŏ	ŏ	Ö	Ö	Ö	Õ	Õ	0	0	0	0	0	0	0
841:	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0
855: 869:	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0	0 0	0 0	0	0	0
883:	0	0	0	0	Ö	ó	Ö	ő	ŏ	0	1	0	0	0
897:	0	0	Ō	0	0	0	0	0	0	0	0	0	0	0
911:	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
925: 939:	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0
953:	ő	ŏ	Ö	ŏ	ŏ	0	0	0	0	0	0	0	0	0
967:	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0
981: 995:	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 0	0 0	0 0	0 0	0	0	0
995: 1009:	0	0	0	-0	0	0	0	0	Ö	Ö	Ŏ	ŏ	ŏ	Ö
1023:	ő	ŏ	•	-	-	=								
													4 (545)	

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:49:34.97

Detector ID: 35 Acquisition Start: 2-SEP-2005 09:45:46.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.30

Batch Id: 0508094A-UU Sample Id: 06

Sample Type: UU

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 3 4	0 0 0	4184.46 4361.65 4460.76 4753.74 5302.07	70 5 1 64 382	0 0 0	0.00 3.10 42.92	247.77 306.80 340.00 438.94 627.40	286 331 387	43 30 82	6.86E-03 12.0 4.90E-04 44.7 9.80E-05100.0 6.27E-03 12.5 3.75E-02 5.1	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:49:37.95

Acquisition Start: 26-AUG-2005 12:01:39.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.20

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4135.40	0	0	0.00	231.50	187	90	0.00E+00	0.0	
2	0	4362.25	2	0	74.45	307.00	286	43	3.33E-05	70.7	
		4477.14	0		0.00	345.50	331	30	0.00E+00	0.0	
4	0	4720.05	3	01	89.22	427.50	387	82	5.00E-05	57.7	
5	0	5259.18	4	01	67.50	612.50	575	76	6.67E-05	50.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:49:38.26

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
1	0	4184.46*	70	0	72.89	247.77			6.86E-03 12.0	
2	0	4361.65*	5	0	0.00	306.80			4.57E-04 48.3	
3	0	4460.76*	1	0	3.10	340.00			9.80E-05100.0	
4	0	4753.74*	63	0	42.92	438.94			6.22E-03 12.6	
5	0	5302.07*	381	0	66.53	627.40	575	76	3.74E-02 5.1	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 12:49:39

Configuration : MCA0:[AMSCOUNT]00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL03

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:45:46

Sample ID : 06 Sample quantity : 1.0334 gram

Sample type : UU Sample geometry :

Detector name : 035 Detector geometry:

Elapsed live time: 0 02:50:00.00 Elapsed real time: 0 02:50:00.30 0.0%

Energy tolerance: 100.00 keV Half life ratio: 8.00
Errors propagated: Yes Systematic Error: 3.00 %
Efficiency type: Average value Efficiencies at: Peak Energy

Abundance limit : 75.00

It	Energy	Area	FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0 0 0	4184.46* 4361.65* 4460.76* 4753.74* 5302.07*	5 1 63	72.89 0.00 3.10 42.92 66.53	306.80 340.00	187 286 331 387 575	90 23.9 43 96.5 30200.0 82 25.2 76 10.3		U-238 U-235 U-236 U-234 U232	0.873 7.201E-02 1.387E-02 0.795 4.78

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:49:59

BATCH ID: 050	8094A-UU	*	SAMPLE ID:		07
SAMPLE DATE: 17-AUG-20		*	ALIQUOT:	1.018E+00	gram
	1705SL04	*	DETECTOR NUMBE		036
ACQ DATE: 2-SEP-20		*	AVERAGE EFFICI	ENCY:	20.93%
ELAPSED LIVE TIME:	10200.	*	RECOVERY:		112.97%
TRACER ID:	UU-10A	*	TRACER FWHM (k	ev):	34.64
LAMBDA VALUE:	602.	*	ROI TYPE:		TANDARD
TRACER DPM AT SAMPLE DATE:	12.505	*	CONFIDENCE FAC	TOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:		2.71
ENERGY CAL DATE: 25-AUG-20	05 04:28	*			
	26AUG05	*	BKG ELAPSED TI	ME:	60000.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
U232	5302.5	501.49	0.51	99.8	5.532E+00	6.761E-01	6.650E-02
U-234	4761.5	65.83	0.17	99.8	7.259E-01	2.062E-01	5.102E-02
U-235	4385.5	3.00	0.00	80.9	4.081E-02	4.747E-02	3.686E-02
U-236	4485.2	1.00	0.00	90.1	1.221E-02	2.449E-02	3.310E-02
U-238	4184.4	52.00	0.00	100.2	5.709E-01	1.775E-01	2.975E-02

-1.58962E-04 3,42318E+03 3.08239E+00 9009 Energy Offset: Energy Slope Quad Energy DKA100: [ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$07_UU.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 \exists Sample Time: : Sample ID : (Sample Type: L 2-SEP-2005 09:46: 0 02:50:00.40 0 02:50:00.00 VPSCR081705SL04 Sample Title: Start Time: Time : Live Time 3500 Spectrum Title Real 10 0 20 30 squnoj

151	Channel														
231															
\$\frac{1}{2}\$: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
177; 0									0	0					
BS	57:							-		-	-		-		
99: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
113: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													1	-	
1441: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	113:	0	0	0						-		-	_		
155: 0	127:														
169: 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												-			0
1071	169:	0	0	0	1	0	0			_	_		-		
1															
225:											-	_		0	0
253:						1	0	1				_			
2321: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	239:											•			
2291: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														-	
\$793. U						0	0	0		-	_	-	_		
3397: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	295:														
337: 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0											-			-	
3511	337:			_				0	0	0	0		-		
303:	351:														
1995 0	365: 370:												_		_
421: 0 0 0 0 0 1 1 0 0 1 1 1 0 0 3 0 4 1 1 1 1 0 3 0 4 1 1 1 1 0 3 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								0	0	0	0		0		0
425: 0 0 0 0 0 2 3 2 2 2 7 7 2 0 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													1 0		î N
\$\frac{4.49!}{4.63:} \$ \$ 2 \$ 2 \$ 3 \$ 2 \$ 2 \$ 7 \$ 2 \$ 0 \$ 5 \$ 3 \$ 0 \$ 0 \$ 1 \$ 4 \$ 4 \$ 1 \$ 1 \$ 3 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0															
463: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										0					
491: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	463:	0	0			_									
Solit O	477: /01:						-	-		-					
519: 0					-	-	-						0	0	
\$351: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	519:	0	0		_	_		-			-				
561: 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0							-	-							
575: 0 0 0 2 1 0	561:					_		_				0	0		
603: 1 3 0 3 2 3 2 7 5 4 5 7 4 6 6 617: 3 10 15 15 8 7 11 12 111 4 12 9 15 18 631: 13 24 9 19 12 22 44 19 26 23 34 16 16 16 16 12 645: 7 6 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0	575:	0				•		-							
617: 3 10 15 15 8 7 11 12 11 4 12 9 15 18 631: 13 24 9 19 12 24 19 26 23 34 16 16 16 16 12 645: 7 6 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
631: 13										11	4	12	9	15	18
659: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		13		9											
673: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	645:	7		Į				,	-	•	•	•	•	-	
687: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	673:									_	0	0	0		0
715: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	687:	-		-		-		-	-	_					
729: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	701: 715•														
757: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	729:	_				-	0	0	0						
771: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	743:														0
785: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/5/: 771•														0
813: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	785:					0	0	0							
827: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	799:														
841: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	813: 827:													0	0
869: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	841:			0	0	0	0	0	0	0					0
883: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	855:														0
897: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	869: 883-														0
925: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	897:	Ō	0	0	0	0	0	0	0	0	0	0			0
939: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	911:														0
953: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	920: 930:											0	0	0	0
967: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	953:	0	0	0	0	0	0	0	Ō	0					0
995: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	967:										-				U N
1009: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	981: 995:											0	0	0	0
1023: 0 0	1009:		0											0	0
, w 1441	1023:	0	0											4 70 207	

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:49:44.66

Acquisition Start: 2-SEP-2005 09:46:03.01 Real Time: 0 02:50:00.40 Detector ID: 36

Live Time: 0 02:50:00.00

Sample Id: 07 Batch Id: 0508094A-UU

Sample Type: UU

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 3 4	0 0 0	4169.11 4405.19 4452.82 4765.28 5299.77	52 3 1 66 502	0 0 0	27.74 3.08 44.18	245.10 324.00 340.00 445.65 629.23	289 334 390	43 30 82	5.10E-03 13.9 2.94E-04 57.7 9.80E-05100.0 6.47E-03 12.3 4.92E-02 4.5	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:49:57.68

Acquisition Start: 26-AUG-2005 12:01:42.01 Real Time: 0 16:40:00.10

Live Time: 0 16:40:00.00

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 0 3 0 4 0	4135.75 4363.44 4478.09 4720.69 5258.73	0 0 0 1 3	0 0	0.00 0.00 0.00 3.08 86.31	310.00 348.50	289 334 390	43 30 82	0.00E+00 0.0 0.00E+00 0.0 0.00E+00 0.0 1.67E-05100.0 5.00E-05 57.7	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:49:57.99

Pk It	t	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 3 4	0 0 0	4169.11* 4405.19* 4452.82* 4765.28* 5299.77*	52 3 1 66 501	0 0	27.74 3.08 44.18	245.10 324.00 340.00 445.65 629.23	289 334 390	43 30 82	5.10E-03 13.9 2.94E-04 57.7 9.80E-05100.0 6.45E-03 12.3 4.92E-02 4.5	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 12:49:58

Configuration : MCA0: [AMSCOUNT] 00009067\$1
Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3
Sample title : VPSCR081705SL04

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:46:03 Sample date

Sample quantity : 1.0182 gram : 07 Sample ID

Sample geometry Sample type : UU

Detector name : 036 Detector geometry:

Elapsed real time: 0 02:50:00.40 0.0% Elapsed live time: 0 02:50:00.00

Half life ratio : Systematic Error : 8.00 Energy tolerance: 100.00 keV 3.00 % Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

Ιt	Energy	Area	FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0	4169.11* 4405.19* 4452.82* 4765.28* 5299.77*	3 1 66	50.93 27.74 3.08 44.18 34.64	245.10 324.00 340.00 445.65 629.23	189 289 334 390 577	91 27.7 43115.5 30200.0 82 24.7 77 8.9		U-238 U-235 U-236 U-234 U232	0.645 4.610E-02 1.380E-02 0.820 6.25

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:50:07

BATCH ID: 05	08094A-UU	*	SAMPLE ID:		08
D111 C11 == 1	005 00:00	*	ALIQUOT:	1.046E+00	gram
	81705SL05	*	DETECTOR NUMB	ER:	037
	005 09:46	*	AVERAGE EFFIC	IENCY:	21.04%
ELAPSED LIVE TIME:	10200.	*	RECOVERY:		86.06%
TRACER ID:	τπι-10A	*	TRACER FWHM (kev):	54.10
LAMBDA VALUE:	597.	*	ROI TYPE:	ST	ANDARD
TRACER DPM AT SAMPLE DATE	1: 12.403	*	CONFIDENCE FA	CTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:		2.71
ENERGY CAL DATE: 25-AUG-2	005 04:28	*	EFF CAL DATE:	25-AUG-2005	04:28
BKG FILENAME: B 03	7 26AUG05	*	BKG ELAPSED T	IME:	60000.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram	
U232	5302.5	380.83	0.17	99.8	5.342E+00	7.057E-01	6.488E-02	
U-234	4761.5	72.83	0.17	99.8	1.021E+00	2.840E-01	6.488E-02	
U-235	4385.5	6.00	0.00	80.9	1.038E-01	8.614E-02	4.687E-02	
U-236	4485.2	-0.34	0.34	90.1	-5.280E-03	7.509E-03	8.420E-02	
U-238	4184.4	60.00	0.00	100.2	8.376E-01	2.498E-01	3.783E-02	

Muyache Analyst

Reviewer

9.2.05

Date 70

-1.80693E-04 3,43795E+03 3.11040E+00 6000 Energy Offset: Energy Slope : Energy Quad DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$08_UU.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 Sample ID : 08 Sample Type: UU Sample Time: e: VPSCR081705SL05 2-SEP-2005 09:46: 0 02:50:00.30 0 02:50:00.00 037 Sample Title: Live Time : Real Time : Start Time: 3500 Spectrum Title 0 etnuol A 20

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 183: 197: 211: 225: 239: 253: 267: 281: 295: 309: 323: 337: 351: 365: 407: 421: 435: 449: 440: 435: 505: 519: 533: 547: 561: 575: 589: 603: 645: 673: 687: 701: 775: 771: 785: 771: 785: 799: 812: 827: 771: 785: 841: 855: 849: 841: 855: 849: 841: 855: 841: 855: 841: 855: 841: 855: 841: 855: 841: 855: 841: 855: 841: 855: 841: 855: 841: 855: 841: 855: 841: 855: 841: 855: 841: 855: 841: 855: 841: 855:	00000000000000011000000011000400001001105420000000000	000000000000000000000000000000000000000	000000000000000140000000101122000010101628000000000000000	000000001000001042000100000011100000001003820000000000000	000000000000002240101000000010000010013682000000000000000000000000000000000000	0000000000000024110000000010131000000000474000000000000	000000000000012100000000012200000021693000000010000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000010000320001000000003000000013830000000000	000000000000000000000000000000000000000	00000000000100040000000000100000000126300000000000000000	00000000000001300000000003120000000104830000010000000000000000000000	000000000000000000000000000000000000000

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:50:03.81

Detector ID: 37 Acquisition Start: 2-SEP-2005 09:46:21.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.30

Batch Id: 0508094A-UU Sample Id: 08

Sample Type: UU

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	4183.36 4366.81 4477.58 4757.23 5294.09	60 6 0 73 381	0 0	99.53 0.00 5.01	243.08 304.00 341.00 435.15 619.01	282 327 382	42 29 82	5.88E-03 5.88E-04 0.00E+00 7.16E-03 3.74E-02	40.8 0.0 11.7	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:50:05.30

Acquisition Start: 26-AUG-2005 12:01:45.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 0 3 0 4 0	4136.21 4362.31 4477.58 4719.84 5259.39	0 0 2 1 1	0 0	0.00 0.00 0.00 0.00 3.11	302.50 341.00 422.50	282 327 382	42 29 82	0.00E+00 0.0 0.00E+00 0.0 3.33E-05 70.7 1.67E-05100.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:50:05.60

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	4183.36* 4366.81* 4477.58* 4757.23* 5294.09*	60 6 0 73 381	0 0	99.53 0.00 5.01	243.08 304.00 341.00 435.15 619.01	282 327 382	42 29- 82	5.88E-03 5.88E-04 3.33E-05 7.14E-03 3.73E-02	40.8 70.7 11.7	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 12:50:06

Configuration : MCA0:[AMSCOUNT]00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

: VPSCR081705SL05 Sample title

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:46:21 Sample date

Sample quantity : 1.0459 gram Sample ID : 08

Sample geometry : Sample type : UU

Detector name : 037 Detector geometry:

Elapsed real time: 0 02:50:00.30 0.0% Elapsed live time: 0 02:50:00.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

It	Energy	Area	FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
Ō	4183.36* 4366.81* 4477.58* 4757.23* 5294.09*	6 0 73	87.79 99.53 0.00 5.01 54.10	243.08 304.00 341.00 435.15 619.01	183 282 327 382 569	90 25.8 42 81.6 29141.4 82 23.5 77 10.3		U-238 U-235 U-236 U-234 U232	0.721 8.931E-02 -4.544E-03 0.879 4.60

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:50:16

Spectral File: ND AMS ARCHIVE_S:S 0508094A-UU\$09 UU.CNF *************************

0508094A-UU

09 SAMPLE ID: BATCH ID: gram 1.021E+00 ALIQUOT: 17-AUG-2005 00:00 SAMPLE DATE: 038 DETECTOR NUMBER: VPSCR081705SL06 SAMPLE TITLE: AVERAGE EFFICIENCY: 20.12% 2-SEP-2005 09:46 ACO DATE: 107.13% RECOVERY: 10200. ELAPSED LIVE TIME: 27.34 TRACER FWHM (kev): UU-10A TRACER ID: STANDARD ROI TYPE: LAMBDA VALUE: 591. 4.65 CONFIDENCE FACTOR: 12.275 TRACER DPM AT SAMPLE DATE: 2.71 LLD CONSTANT: SOIL SAMPLE MATRIX:

25-AUG-2005 04:28 EFF CAL DATE: ENERGY CAL DATE: 25-AUG-2005 04:28 60000.

BKG ELAPSED TIME: B 038 26AUG05 BKG FILENAME:

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
U232	5302.5	448.66	0.34	99.8	5.418E+00	6.827E-01	6.543E-02
U-234	4761.5	76.83	0.17	99.8	9.273E-01	2.504E-01	5.585E-02
U-235	4385.5	2.49	0.51	80.9	3.707E-02	5.259E-02	8.979E-02
U-236	4485.2	2.66	0.34	90.1	3.556E-02	4.704E-02	7.248E-02
U-238	4184.4	62.49	0.51	100.2	7.510E-01	2.194E-01	7.248E-02

-1.46447E-04 3,45434E+03 3,08936E+00 6000 Energy Offset: Energy Slope Energy Quad DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$09_UU.CNF;1 5500 Sample Time: 17-AUG-2005 00:00 Sample ID : 09 Sample Type: UU 2-SEP-2005 09:46: 0 02:50:00.50 0 02:50:00.00 Sample Title: VPSCR081705SL06 Start Time: Real Time : Live Time Spectrum Title 0 T 20 30 squnoj

Energy (keV)

Channel														
1: 15: 29: 43: 71: 85: 99: 113: 127: 141: 159: 225: 239: 253: 267: 295: 295: 309: 323: 365: 407: 421: 435: 449: 449: 463: 471: 505: 547: 505: 547: 757: 771: 785: 771: 785: 785: 785: 785: 785: 785: 785: 785	0000000000010030000001000160000000103370000000000	000000000010000300010000001011000000110038120000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000001130000000001044000100000791000000000000000	000000000000000000000000000000000000000	00010001000000150000000000126000000102119000000000000000	00000000000001401000100000012000000004910000000000	000000000100102200000000000101001001023530000000000	00001000000000040000000001001000000000572000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000001223000000110100010000000012380000000000	00000000000140000010000012000100010205280100000000000

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:50:11.21

Acquisition Start: 2-SEP-2005 09:46:39.01 Real Time: 0 02:50:00.50 Detector ID: 38

Live Time: 0 02:50:00.00

Sample Id: 09 0508094A-UU Batch Id:

Sample Type: UU

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	4184.28 4374.97 4482.81 4759.88 5301.62	63 3 3 77 449	0 0 0	33.98 61.79 34.20	238.98 302.33 338.33 431.42 615.93	277 322 378	43 30 81	6.18E-03 2.94E-04 2.94E-04 7.55E-03 4.40E-02	57.7 57.7 11.4	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:50:13.36

Acquisition Start: 26-AUG-2005 12:01:48.01

Real Time: 0 16:40:00.10 Live Time: 0 16:40:00.00

Pk	It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw Cts/Sec %Err Fit
2 3 4	0 0 0	4134.47 4361.97 4477.33 4720.11 5259.61	3 3 2 1 2	0 24.71	298.00 336.50 418.00	277 322 378	90 5.00E-05 57.7 43 5.00E-05 57.7 30 3.33E-05 70.7 81 1.67E-05100.0 76 3.33E-05 70.7

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:50:13.66

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	4184.28* 4374.97* 4482.81* 4759.88* 5301.62*	62 2 3 77 449	0 0 0	33.98 61.79 34.20	238.98 302.33 338.33 431.42 615.93	277 322 378	43 30 81	6.13E-03 2.44E-04 2.61E-04 7.53E-03 4.40E-02	70.6 65.7 11.4	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 12:50:15

Configuration : MCA0: [AMSCOUNT] 00009067\$1 : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 : VPSCR081705SL06 : VPSCR081705SL06 : 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:46:39 Sample date

Sample quantity : 1.0206 gram Sample ID : 09

: UU Sample geometry : Sample type

Detector name : 038 Detector geometry:

Elapsed real time: 0 02:50:00.50 0.0% Elapsed live time: 0 02:50:00.00

Half life ratio : 8.00 Systematic Error : 3.00 Energy tolerance: 100.00 keV Errors propagated: Yes 3.00 % Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

It	Energy	Area	FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0	4184.28* 4374.97* 4482.81* 4759.88* 5301.62*	2 3 77	53.97 33.98 61.79 34.20 27.34	238.98 302.33 338.33 431.42 615.93	178 277 322 378 564	90 25.4 43141.1 30131.5 81 22.8 76 9.4		U-238 U-235 U-236 U-234 U232	0.805 3.972E-02 3.810E-02 0.993 5.80

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:50:30

Spectral File: ND AMS ARCHIVE S:S 0508094A-UUS10 UU.CNF

44	· * * *	+++	-++	***	**	* * 1	***	٠ ٠٠	* * *	* * *	**	* *	* * *	* * >	* * :	* *	* *	* *	**	* *	* *	**	* *	* *	* *	* *
^ ′						.,		• • • •																		

BATCH ID:	0508094A-UU	*	SAMPLE ID:	10
SAMPLE DATE:	17-AUG-2005 00:00	*	ALIQUOT: 1.067E+00	gram
SAMPLE TITLE:	VPSCR081705SL07	*	DETECTOR NUMBER:	039
ACQ DATE:	2-SEP-2005 09:46	*	AVERAGE EFFICIENCY:	20.45%
ELAPSED LIVE TIME	: 10200.	*	RECOVERY:	80.27%
TRACER ID:	UU-10A	*	TRACER FWHM (kev):	47.91
LAMBDA VALUE:	616.	*	ROI TYPE: ST	ANDARD
TRACER DPM AT SAM	PLE DATE: 12.779	*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
ENERGY CAL DATE: 3	25-AUG-2005 04:28	*	EFF CAL DATE: 25-AUG-2005	04:28
BKG FILENAME:	B_039_26AUG05	*	BKG ELAPSED TIME:	60000.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
U232 5302.5	355.83	0.17	99.8	5.395E+00	7.279E-01	7.013E-02
U-234 4761.5	66.83	0.17	99.8	1.013E+00	2.919E-01	7.013E-02
U-235 4385.5	0.83 0	0.17	80.9	1.552E-02	3.800E-02	8.651E-02
U-236 4485.2	1.00	0.00	90.1	1.679E-02	3.367E-02	4.549E-02
U-238 4184.4	60.83	0.17 1	100.2	9.179E-01	2.739E-01	6.982E-02

-1.57003E-04 3,43960E+03 3.09399E+00 6000 Energy Offset: Energy Slope : Energy Quad : DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$10_UU.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 3 Sample ID : Sample Type: Time: Sample 4500 2-SEP-2005 09:46: 0 02:50:00.30 0 02:50:00.00 VPSCR081705SL07 039 Sample Title: Live Time : Start Time: Real Time : 3500 Spectrum Title 0 20 squnog

Channel														
1:	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
15:	0	0 0	0 1	0 0	0	0	0							
29: 43:	0 0	0	0	0	0	0	0	Ö	1	Ŏ	ŏ	ŏ	Ö	Ō
57:	Ö	0	Ö	Õ	Ŏ	Ŏ	Ŏ	Ö	Ö	0	0	0	0	0
71:	Ŏ	Ŏ	Ō	0	0	0	0	0	0	0	0	0	0	0
85:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
99:	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0 0	0
113:	0	0 0	0 1	0 0	0 0	0 1	0 0	0 0	0	0	0	0	0	ŏ
127: 141:	0 0	0	0	0	1	Ó	0	ő	0	Ŏ	ŏ	Ŏ	Ö	Ō
155:	0	Ö	Ŏ	Ŏ	ò	Ŏ	Ö	Ō	0	0	0	0	0	0
169:	Ö	Ö	Ō	0	0	0	0	0	0	0	0	0	0	0
183:	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
197:	0	1	1	0	0	0 0	1 0	1 0	0 0	0 0	0 1	0	1	0
211: 225:	0 0	0 3	0 0	0 1	1 1	1	0	0	1	2	3	2	i	1
239:	1	0	5	2	ż	i	2	4	i	2	2	2	1	2
253:	3	4	1	ō	0	0	2	0	1	0	0	0	0	0
267:	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
281:	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0	0
295:	0	0	0 0	0 0	0	0 0	0 0	0 1	0	0	Ö	Ö	Ö	ŏ
309: 323:	0 0	0 0	0	0	Ö	0	1	Ó	Ŏ	Ŏ	Ö	Ō	0	0
337:	0	ő	ŏ	Ŏ	ŏ	Ŏ	Ò	Ö	0	0	0	0	0	0
351:	Ö	Ō	0	0	0	0	0	0	0	0	0	0	0	0
365:	0	0	0	1	0	0	0	0	1	0	0	0 1	0 0	0 3
379:	0	0	1	0	1 0	0 1	0 0	0 0	0 0	0 2	0	Ó	0	1
393: 407:	0 0	1 0	1 1	0 2	0	1	0	1	2	ō	Ŏ	Ŏ	Ŏ	1
421:	Ö	1	ó	3	Ŏ	ò	1	i	ō	2	1	1	1	3
435:	ĺ	3	0	4	5	3	0	6	3	2	1	0	0	0
449:	1	1	2	1	0	0	0	0	0	0	0	0 0	0 0	0 1
463:	1	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0	ó
477: 491:	0 0	0 0	0 0	0 0	0 0	0 0	1	0	0	0	1	Õ	Ö	ŏ
505:	2	0	0	0	0	0	Ö	Ö	Ö	Ŏ	Ó	Ŏ	1	1
519:	ō	Õ	Õ	Ö	Ŏ	Ö	Ö	1	0	0	0	0	0	0
533:	1	0	0	0	0	0	0	0	0	0	0	0	0	0
547:	0	1	1	0	0	0	0	0	0	0	1	0 1	1 0	2 0
561:	1	0	1	2	1 1	0 2	1 1	3 1	0 1	0 2	1 1	Ö	1	1
575: 589:	2 1	0 0	0 6	1 4	Ó	3	ż	4	3	ō	7	2	2	10
603:	5	4	5	6	5	5	7	6	6	8	8	12	2	11
617:	9	13	9	13	3	10	11	15	7	12	10	24	14	8
631:	15	4	14	6	3	4	2	0	0	0	0 0	0	0 0	0
645:	0	0	0	0	0 0	0 1	0 0	0 0	0 0	0	0	0	0	ő
659: 673:	0 0	0	0	0	0	Ó	0	Ö	ŏ	ŏ	ŏ	Ö	Ö	0
687:	Õ	ŏ	ŏ	Ŏ	ŏ	Ŏ	Ö	Ö	0	0	0	0	0	0
701:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
715:	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
729: 743:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	ŏ	Õ	ŏ
743: 757:	0	0	0	Ö	Ö	Õ	Ö-	ŏ	Ö	Ö	Ō	0	0	0
771:	Ŏ	Ö	Ō	Ō	0	0	0	0	0	0	0	0	0	0
785:	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0
799:	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0 0
813: 827:	0 0	0 0	0 0	0 0	0	0	0	0	Ö	ŏ	ŏ	Õ	Ö	Ō
841:	0	Ö	ő	ő	ŏ	Ö	Ö	Ö	Ö	Ō	0	0	0	0
855:	ŏ	Ŏ	0	0	0	0	0	0	0	0	0	0	0	0 0 0 0 0
869:	0	0	0	0	0	0	0	0	0	0	0	0 1	0 0	U n
883:	0	1	0	0	0	0	0	0 0	0 0	0 0	0 0	1 0	0	0
897: 911:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	Ö	Ö	ŏ
911: 925:	0	0	0	0	0	0	0	0	ő	Ö	0	0	0	0
939:	ŏ	Ö	Ŏ	ŏ	Ŏ	0	0	0	0	0	0	0	0	0
953:	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
967:	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0
981: 995:	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	ŏ	0
995: 1009:	0	0	0	0	0	Ö	ŏ	Ö	Ö	Ö	ŏ	Ö	Ō	0
1023:	ŏ	Ŏ	•	•	•	•	-	-						
-														

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:50:20.43

Acquisition Start: 2-SEP-2005 09:46:57.01 Real Time: 0 02:50:00.30 Detector ID: 39

Live Time: 0 02:50:00.00

Batch Id: 0508094A-UU Sample Id: 10

Sample Type: UU

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 3 4	0 0	4172.02 4401.62 4440.53 4736.04 5287.17	61 1 1 67 356	0 0 0	3.09 3.09 16.13	239.64 316.00 329.00 428.33 616.43	282 327 382	43 30 83	5.98E-03 12.8 9.80E-05100.0 9.80E-05100.0 6.57E-03 12.2 3.49E-02 5.3	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:50:28.51

Acquisition Start: 26-AUG-2005 12:01:50.01

Real Time: 0 16:40:00.10 Live Time: 0 16:40:00.00

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
1 0	4135.35	1	0	3.09	227.50			1.67E-05100.0	
2 0	4362.66	1	0	3.09	303.00			1.67E-05100.0	
3 0	4477.89	0	0	0.00	341.50			0.00E+00 0.0	
_	4720.26	1	0	3.09	423.00			1.67E-05100.0	
-	5258.35	1	0	3.09	606.50	569	76	1.67E-05100.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:50:28.83

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 3 4	0 0 0	4172.02* 4401.62* 4440.53* 4736.04* 5287.17*	61 1 1 67 356	0 0 0	3.09 3.09 16.13	239.64 316.00 329.00 428.33 616.43	282 327 382	43 30 83	5.96E-03 12.8 8.14E-05122.2 9.80E-05100.0 6.55E-03 12.3 3.49E-02 5.3	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 12:50:29

Configuration : MCA0: [AMSCOUNT] 00009067\$1 : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL07

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:46:57 Sample date

Sample quantity : 1.0670 gram : 10 Sample ID

Sample geometry : UU Sample type

Detector name : 039 Detector geometry:

Elapsed real time: 0 02:50:00.30 0.0% Elapsed live time: 0 02:50:00.00

Half life ratio : Energy tolerance: 100.00 keV 8.00 3.00 % Systematic Error : Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

Ιt	Energy	Area	FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0 0 0	4172.02* 4401.62* 4440.53* 4736.04* 5287.17*	1 1 67	3.09 16.13	239.64 316.00 329.00 428.33 616.43	183 282 327 382 569	90 25.7 43244.4 30200.0 83 24.5 76 10.6		U-238 U-235 U-236 U-234 U232	0.737 1.246E-02 1.347E-02 0.813 4.33

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:50:43

BATCH ID:	0508094A-UU	*	SAMPLE ID:	11
SAMPLE DATE:	17-AUG-2005 00:00	*	ALIQUOT: 9.941E-01	gram
SAMPLE TITLE:	VPSCR081705SL08	*	DETECTOR NUMBER:	040
ACQ DATE:	2-SEP-2005 09:47	*	AVERAGE EFFICIENCY:	20.89%
ELAPSED LIVE TIM		*	RECOVERY:	93.92%
TRACER ID:	UU-10A	*	TRACER FWHM (kev):	81.15
LAMBDA VALUE:	609.	*		ANDARD
TRACER DPM AT SAI	* * * * *	*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
	25-AUG-2005 04:28	*	EFF CAL DATE: 25-AUG-2005	04:28
	B 040 26AUG05	*	BKG ELAPSED TIME:	60000.
BKG FILENAME:	B_040_26A0G05	••	DIG BENEDED TIME.	

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram	
U232	5302.5	420.49	0.51	99.8	5.726E+00	7.348E-01	8.208E-02	
U-234	4761.5	75.66	0.34	99.8	1.030E+00	2.810E-01	7.379E-02	
U-235	4385.5	2.00	0.00	80.9	3.358E-02	4.774E-02	4.550E-02	
U-236	4485.2	1.00	0.00	90.1	1.508E-02	3.023E-02	4.086E-02	
U-238	4184.4	75.83	0.17	100.2	1.028E+00	2.799E-01	6.271E-02	
							و جاو جاه جاه ماه ماه ماه ماه ماه ماه ماه ماه ماه م	_

*** Tracer FWHM > 80.0 Kev

-1.65420E-04 3,43216E+03 3.09948E+00 6000 Energy Offset: Energy Slope Energy Quad DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$11_UU.CNF;1 5500 Sample Time: 17-AUG-2005 00:00 Energy (keV) 5000 Sample ID : 11 Sample Type: UU 4500 e: VPSCR081705SL08 2-SEP-2005 09:47: 0 02:50:00.30 0 02:50:00.00 4000 Sample Title: Live Time : Start Time: Real Time : 3500 Spectrum Title etnuoj A 0 20

Channel														
1:	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0 0	0 0
15: 29:	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	Ö	0	0
43:	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
57:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0
71: 85:	0	0	0	Ö	Ö	Ö	0	0	0	0	0	0	0	0
99:	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0
113: 127:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	Ö	Ö	Ö	Ö
141:	Ŏ	ŏ	0	0	0	0	0	0	0	1	0	0	0	0
155:	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0
169: 183:	0 0	0 0	0	0	0	0	0	Ö	Ö	Ö	0	0	0	0
197:	0	0	0	1	0	0	0	0	0	0 0	0 0	1 1	0 0	0 0
211: 225:	0 1	0 0	0 0	1 1	0 0	0 1	0 0	0 1	0 0	0	2	1	1	0
239:	3	4	1	0	2	1	4	2	3	3	3	2	0	5
253:	5	3	4 0	2 0	6 0	1 0	1 0	4 0	3 0	0 0	0 0	0 0	1 0	0 0
267: 281:	1 0	0 0	0	0	0	0	Ö	Ö	Ö	Ö	0	0	0	0
295:	0	0	0	0	0	0	0	0	1	0	0 0	0 0	0 1	0 0
309: 323:	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0	0	Ó	0
337:	0	0	Ö	ő	ŏ	ö	1	0	0	0	0	0	0	0
351:	0	0	0	0	0	0 1	0 0	0 0	0 0	1 0	0	0 0	0 0	0 0
365: 379:	0 0	0 0	0 0	0 0	0 0	1	0	0	Õ	1	0	ŏ	0	1
393:	0	0	0	0	0	0	1	0	1	0	0	1 1	0 0	0 0
407: 421:	0	0 0	0 0	1 2	0 2	0 1	0 0	1 2	1 3	0 1	0 1	Ó	1	2
435:	1	0	1	1	1	i	0	1	3	3	0	4	3	3
449:	6	3	4	5	1 0	1 0	2 0	7 0	0 0	0 0	0	0 1	0 0	0 0
463: 477:	0 0	0 0	0 0	1 0	0	0	0	ŏ	0	Ö	Ö	ö	0	0
491:	0	0	0	0	Ō	0	1	0	0	0	0	0 0	0 0	0
505: 519:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	1	0
533:	0	0	1	Ö	Ŏ	Ö	ŏ	0	Ó	0	0	1	0	0
547:	0	0	0	0	0 0	0 1	1 0	0 1	0 1	0 1	0 0	1 1	0 2	0 0
561: 575:	0 0	0 0	0 0	0 1	0	Ó	1	2	i	i	ĭ	i	0	0
589:	0	1	0	1	0	3	1	0	2	1	2	0 6	1 15	0 7
603: 617:	3 9	5 7	1 11	4 8	5 11	1 11	4 11	10 14	2 8	7 9	6 6	11	20	11
631:	ģ	15	19	15	20	19	16	18	16	15	7	3	3	0
645:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0 0	0 0	0 0	0 0	0
659: 673:	0	0	0	0	Ö	0	Ö	0	Ö	ŏ	0	0	0	0
687:	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0
701: 715:	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0	0	0	ő
729:	0	0	0	0	0	1	0	0	0	0	0	0 1	0 0	0 0
743: 757:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0
771:	0	ŏ	Ö	0	0	0	0	0	. 0	0	0	0	0	0
785:	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
799: 813:	0 0	0 0	0 0	0	0	0	0	0	Ö	Ö	Ö	0	0	0
827:	0	Ō	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0
841: 855:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0	0	0
869:	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
883:	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
897: 911:	0 0	0 0	0	0	0	0	0	Ŏ	Ö	Ö	0	0	0	0
925:	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0
939: 953:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0
967:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
981:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
995: 1009:	0 0	0	0	0	0	0	0	0	0	Ö	Ö	ő	1	Ö
1023:	Ō	0											× ***	
													4 4 52	

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:50:35.55

Acquisition Start: 2-SEP-2005 09:47:15.01 Detector ID: 40

Real Time: 0 02:50:00.30 Live Time: 0 02:50:00.00

Sample Id: 11 Batch Id: 0508094A-UU

Sample Type: UU

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 3 4	0 0 0	4188.24 4383.10 4475.82 4762.90 5303.98	76 2 1 76 421	0 0 0	58.89 3.10 32.91	247.20 312.00 343.00 439.66 624.74	284 329 385	43 30 82	7.45E-03 11.5 1.96E-04 70.7 9.80E-05100.0 7.45E-03 11.5 4.13E-02 4.9	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:50:41.25

Acquisition Start: 26-AUG-2005 12:01:53.01 Real Time: 0 16:40:00.10

Live Time: 0 16:40:00.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 3 4	0 0 0	4134.78 4362.11 4477.31 4721.04 5259.84	1 0 0 2 3	0 0 01	0.00 0.00 76.67	229.50 305.00 343.50 425.50 609.50	284 329 385	43 30 82	1.67E-05100.0 0.00E+00 0.0 0.00E+00 0.0 3.33E-05 70.7 5.00E-05 57.7	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:50:41.56

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 0 3 0 4 0	4188.24* 4383.10* 4475.82* 4762.90* 5303.98*	76 2 1 76 420	0 0 0	58.89 3.10 32.91		284 329 385	43 30 82	7.43E-03 11.5 1.96E-04 70.7 9.80E-05100.0 7.42E-03 11.5 4.12E-02 4.9	

Configuration : MCA0: [AMSCOUNT] 00009067\$1 : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Sample title : VPSCR081705SL08

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:47:15 Sample date

Sample quantity : 0.99410 gram : 11 Sample ID

Sample geometry : UU Sample type

Detector name : 040 Detector geometry:

Elapsed real time: 0 02:50:00.30 0.0% Elapsed live time: 0 02:50:00.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

It	Energy	Area	FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0	4188.24* 4383.10* 4475.82* 4762.90* 5303.98*	2 1 76	68.15 58.89 3.10 32.91 81.15	312.00 343.00 439.66	284 329	90 23.0 43141.4 30200.0 82 23.1 76 9.8		U-238 U-235 U-236 U-234 U232	0.965 3.154E-02 1.416E-02 0.967 5.38

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:50:53

BATCH ID:	0508094A-UU	*	SAMPLE ID:	12
SAMPLE DATE:	17-AUG-2005 00:00	*	ALIQUOT: 1.161E+00	gram
SAMPLE TITLE:	VPSCR081705SL09	*	DETECTOR NUMBER:	041
ACO DATE:	2-SEP-2005 09:47	*	AVERAGE EFFICIENCY:	21.11%
ELAPSED LIVE TIM		*	RECOVERY:	96.12%
TRACER ID:	UU-10A	*	TRACER FWHM (kev):	54.61
LAMBDA VALUE:	608.	*	ROI TYPE: ST	'ANDARD
TRACER DPM AT SAI		*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
	25-AUG-2005 04:28	*	EFF CAL DATE: 25-AUG-2005	04:28
BKG FILENAME:	B_041_26AUG05	*	BKG ELAPSED TIME:	60000.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
U232	5302.5	434.00	0.00	99.8	4.893E+00	6.220E-01	3.054E-02
U-234	4761.5	92.00	0.00	99.8	1.037E+00	2.632E-01	3.054E-02
U-235	4385.5	4.00	0.00	80.9	5.561E-02	5.619E-02	3.768E-02
U-236	4485.2	2.83	0.17	90.1	3.533E-02	4.375E-02	5.776E-02
U-238	4184.4	63.00	0.00	100.2	7.070E-01	2.055E-01	3.041E-02

Muracher Analyst

Date

Reviewer

4/20

-1.68087E-04 3.11669E+00 3.45145E+03 0009 Offset: Energy Slope Energy Quad Energy DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$12_UU.CNF;1 5500 17-AUG-2005 00:00 5000 Sample Time: 17-6 Sample ID : 12 Sample Type: UU 2-SEP-2005 09:47: 0 02:50:00.30 0 02:50:00.00 VPSCR081705SL09 4000 041 Sample Title: Real Time : Start Time: Live Time 3500 Spectrum Title 70 20 squnoj

Energy (keV)

Channel														
1:	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0
15: 29:	1 0	0 0	0 0	0 0	0 0	0 0	0	0	0	Ö	0	ŏ	0	0
43:	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
57:	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
71: 85:	0 0	0 0	0	0	0	0	0	Ö	Ö	ŏ	Ŏ	Ö	Ö	0
99:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
113:	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
127: 141:	0 0	0 0	0	0	0	0	0	2	0	Ö	Ö	Ŏ	Ö	Ŏ
155:	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
169:	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
183: 197:	0 0	0 0	2	1	0	1	0	1	Ö	1	ŏ	ŏ	0	0
211:	0	0	0	0	1	0	0	2	0	3	0	0	0	1
225:	0	3	1	0 3	1 3	1 1	2 1	1 4	1 2	1 4	2 1	1 3	2 3	2 2
239: 253:	0 2	1 0	2 0	0	0	Ó	Ö	0	Õ	ō	Ö	ő	0	0
267:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
281:	0	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0
295: 309:	0 0	0	1	0	1	Ô	0	Õ	ò	ŏ	Ö	Ō	0	0
323:	0	0	1	0	0	0	0	0	0	0	0	0	0	0 0
337:	0 0	1 0	0 0	0 0	0 1	0	0	0 0	1 0	0 1	0 0	0	0 0	0
351: 365:	0	0	0	0	Ó	0	0	Õ	ő	ò	ŏ	0	0	0
379:	0	1	1	0	0	0	0	0	0	0	0	0	0	0 0
393: 407:	0 1	1 0	0 0	1 2	0 1	0 2	0	1 0	1	0 2	0 0	0 0	1 0	Ö
407: 421:	1	1	3	2	4	4	1	2	ż	3	2	1	3	2
435:	2	6	8	2	4	3	4	1	4	4	4	0	1 0	1 0
449:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 0	0	0 0	0	Ö
463: 477:	0	1	0	0	0	0	Ö	0	Ö	ĭ	ŏ	ő	0	0
491:	0	0	0	1	0	0	0	0	0	1	0	0	0	0
505:	1	1	0	0 0	1 0	0 0	0 0	0 0						
519: 533:	0 0	0 0	0 0	0	0	0	0	0	Ö	Ö	ő	1	0	0
547:	0	0	0	0	0	0	2	2	1	0	0	0	0	0
561:	0 0	1 1	1 0	2 0	1 0	1 0	0 1	0 0	0 2	0 0	0 2	0 0	0 1	1 0
575: 589:	3	1	1	2	3	4	6	5	6	5	4	5	4	7
603:	9	10	9	10	7	8	11	13	13	6	12	4	13 6	19 5
617: 631:	11 2	15 0	20 0	23 0	17 0	21 0	20 0	20 0	25 0	11 0	16 0	8 0	0	0
645:	0	ő	Ö	Ŏ	Ö	ŏ	Ŏ	ŏ	Ŏ	Ö	0	0	1	0
659:	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0
673: 687:	1 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0	Ö	0	Ö
701:	0	Ö	Ö	ŏ	Ö	ŏ	ŏ	Ö	0	Ō	0	0	0	0
715:	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0 0	0 0
729: 743:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	Ö	Ö	ő
757:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
771:	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
785: 799:	1 0	0 0	0	0	0	0	0	0	Ö	ő	ŏ	0	0	0
813:	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
827: 841:	0 0	0 0	0 0	0 0	0 0	0	0							
855:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
869:	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0
883: 897:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0
911:	0	0	0	0	0	0	Ŏ	0	0	0	0	0	0	0
925:	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0
939: 953:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	. 0	0	0	0	0
967:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
981:	0	0	0	0	0	1	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
995: 1009:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	Ô
1023:	Ô	Ö	ŭ	•	J	Ĭ	~	-	-					
													4 22 23	

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:50:47.82

Acquisition Start: 2-SEP-2005 09:47:32.01 Detector ID: 41

Real Time: 0 02:50:00.30 Live Time: 0 02:50:00.00 Batch Id: 0508094A-UU

Sample Id: 12

Sample Type: UU

Pk :	Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0	4175.50 4378.86 4479.68 4759.96 5300.61	63 4 3 92 434	0 0 0	96.62 65.45 6.59	235.30 302.50 336.00 429.80 613.62	276 321 376	43 29 82	6.18E-03 3.92E-04 2.94E-04 9.02E-03 4.25E-02	50.0 57.7 10.4	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:50:50.78

Acquisition Start: 26-AUG-2005 12:01:56.01 Real Time: 0 16:40:00.10

Live Time: 0 16:40:00.00

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %E	rr Fit
1 0	4135.07	0	0	0.00	222.00			0.00E+00 0	
2 0	4362.28	0	0	0.00	297.00			0.00E+00 0	
	4476.67	1	0	0.00	335.00			1.67E-05100	
	4720.39	0	0	0.00	416.50	_		0.00E+00 0	
	5259 49	0	0	0.00	599.50	562	76	0.00E+00 0	.0

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:50:51.10

Pk I	t	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	4175.50* 4378.86* 4479.68* 4759.96* 5300.61*	63 4 3 92 434	0 9 0 0	96.62 65.45 6.59	235.30 302.50 336.00 429.80 613.62	276 321 376	43 29 82	6.18E-03 3.92E-04 2.77E-04 9.02E-03 4.25E-02	50.0 61.5 10.4	

Configuration : MCA0:[AMSCOUNT]00009067\$1
Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3
Sample title : VPSCR081705SL09

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:47:32 Sample date

: 12 Sample quantity : 1.1611 gram Sample ID

: UU Sample geometry Sample type

Detector name : 041 Detector geometry:

Elapsed real time: 0 02:50:00.30 0.0% Elapsed live time: 0 02:50:00.00

Energy tolerance : 100.00 keV Half life ratio : 8.00 Systematic Error : 3.00 % Errors propagated: Yes Efficiency type : Average value Efficiencies at : Peak Energy

Abundance limit : 75.00

It	Energy	Area FWHM Channe	l Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0	4175.50* 4378.86* 4479.68* 4759.96* 5300.61*	63100.72 235.3 4 96.62 302.5 3 65.45 336.0 92 6.59 429.8 434 54.61 613.6	0 276 0 321 0 376	89 25.2 43100.0 29123.0 82 20.9 76 9.6		U-238 U-235 U-236 U-234 U232	0.680 5.346E-02 3.396E-02 0.997 4.70

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:51:08

*

BATCH ID:	0508094A-UU	*	SAMPLE ID:	13
	17-AUG-2005 00:00	*	ALIQUOT: 1.049E+00) gram
SAMPLE TITLE:	VPSCR081705SL10	*	DETECTOR NUMBER:	042
ACQ DATE:	2-SEP-2005 09:47	*	AVERAGE EFFICIENCY:	21.73%
ELAPSED LIVE TIME		*	RECOVERY:	85.31%
TRACER ID:	UU-10A	*	TRACER FWHM (kev):	57.03
LAMBDA VALUE:	603.	*		STANDARD
TRACER DPM AT SAM		*	CONFIDENCE FACTOR:	4.65
	SOIL	*	LLD CONSTANT:	2.71
SAMPLE MATRIX:		*	EFF CAL DATE: 25-AUG-200	05 04:28
	25-AUG-2005 04:28 B 042 26AUG05	*	BKG ELAPSED TIME:	60000.
BKG FILENAME:	B_042_26A0G05	••	DIO HUMIDED TIME.	

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
U232	5302.5	393.32	0.68	99.8	5.371E+00	7.029E-01	8.933E-02
U-234	4761.5	92.00	0.00	99.8	1.256E+00	3.212E-01	3.699E-02
U-235	4385.5	4.00	0.00	80.9	6.736E-02	6.809E-02	4.563E-02
U-236	4485.2	4.00	0.00	90.1	6.048E-02	6.114E-02	4.097E-02
U-238	4184.4	72.00	0.00	100.2	9.786E-01	2.724E-01	3.683E-02

Analyst

Reviewer

9.2.05

Date

-1.86374E-04 3,44878E+03 3.12999E+00 6000 Energy Offset: Energy Slope Energy Quad DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$13_UU.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 Sample ID : 13 Sample Type: UU Sample Time: 2-SEP-2005 09:47: 0 02:50:00.30 0 02:50:00.00 VPSCR081705SL10 042 Sample Title: Real Time : Start Time: Time 3500 Spectrum Title Live 10 20 squnoj

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 183: 211: 225: 239: 267: 281: 295: 309: 323: 379: 365: 449: 449: 449: 449: 463: 575: 589: 575: 589: 575: 589: 575: 589: 575: 589: 575: 589: 575: 589: 575: 589: 575: 589: 575: 589: 575: 589: 575: 589: 575: 575: 589: 575: 575: 575: 575: 575: 575: 575: 57	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000001000003140000000000000010002096001000000000000000	00000000000000111111001000001021000010890000000000	00001010000000102100000000012200110000010560000000000	0000000000100000100001000012440010000011011400000000	000000000000013311000001000120600000100001	0000000000010021100000000000001000100022690000000000	0000000000001210000000001040000000004540000000000	0000000000001111300000000013800100010205840000000000000000000000000000000000	0000000100003400000100001136000000155900000000000000000000000000000	000000000000134000100000211100001020160000000000000000	0110001000000016010110000001111100000000	00000010000001201000000011031100000002238500000000000000
771: 785: 799: 813: 827:	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:50:56.77

Detector ID: 42 Acquisition Start: 2-SEP-2005 09:47:52.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.30

Batch Id: 0508094A-UU Sample Id: 13

Sample Type: UU

Pk I	īt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	4186.37 4374.02 4465.13 4759.76 5302.65	72 4 4 92 394	01 0 0	06.42 0.00 27.27	239.06 301.00 331.25 429.85 614.80	277 321 376	42 30 82	7.06E-03 3.92E-04 3.92E-04 9.02E-03 3.86E-02	50.0 50.0 10.4	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:51:05.48

Acquisition Start: 26-AUG-2005 12:01:59.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk	It	Energy	Area	Bkgnđ	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4135.97	0	0	0.00	222.50	178	90	0.00E+00	0.0	
2	0	4363.45	0	0	0.00	297.50	277	42	0.00E+00	0.0	
3	0	4477.91	0	0	0.00	335.50	321	30	0.00E+00	0.0	
4	0	4720.08	0	0	0.00	416.50	376	82	0.00E+00	0.0	
5	0	5258.22	4	0	65.73	599.50	562	76	6.67E-05	50.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:51:05.79

Pk It	Energy	7 Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	4186.37 4374.02 4465.13 4759.76 5302.65	2* 4 3* 4 5* 92	0106.42 0 0.00 0 27.27	331.25 429.85	277 321 376	42 30 82	7.06E-03 3.92E-04 3.92E-04 9.02E-03 3.86E-02	50.0 50.0 10.4	

Configuration : MCA0: [AMSCOUNT] 00009067\$1 : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL10

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:47:52

Sample quantity : 1.0491 gram : 13 Sample ID

Sample type Sample geometry : : UU

Detector name : 042 Detector geometry:

0.0% Elapsed real time: 0 02:50:00.30 Elapsed live time: 0 02:50:00.00

Half life ratio : Energy tolerance: 100.00 keV 8.00 3.00 % Errors propagated: Yes Systematic Error : Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

It	Energy	Area FV	WHM Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0	4186.37* 4374.02* 4465.13* 4759.76* 5302.65*	72 22 4106 4 0 92 27 393 57	.42 301.00 .00 331.25 .27 429.85	277 321 376	90 23.6 42100.0 30100.0 82 20.9 76 10.1		U-238 U-235 U-236 U-234 U232	0.835 5.746E-02 5.159E-02 1.07 4.58

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:51:28

Spectral File. ND AMS ARCHIVE S.S 0508094A-IIIS14 IIII CNF

Spectral File: ND AMS ARCHIVE S:S_0500094A-00\$14_00.CM

BATCH ID:	0508094A-UU	*	SAMPLE ID:	14
SAMPLE DATE:	17-AUG-2005 00:00	*	ALIQUOT: 1.102E+00	gram
SAMPLE TITLE:	VPSCR081705SL11	*	DETECTOR NUMBER:	043
ACQ DATE:	2-SEP-2005 09:48	*	AVERAGE EFFICIENCY:	21.73%
ELAPSED LIVE TIM	E: 10200.	*	RECOVERY:	85.26%
TRACER ID:	UU-10A	*	TRACER FWHM (kev):	30.34
LAMBDA VALUE:	601.	*	ROI TYPE: ST	ANDARD
TRACER DPM AT SA	MPLE DATE: 12.470	*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
ENERGY CAL DATE:	25-AUG-2005 04:28	*	EFF CAL DATE: 25-AUG-2005	04:28
BKG FILENAME:	B_043_26AUG05	*	BKG ELAPSED TIME:	60000.
TRACER DPM AT SA SAMPLE MATRIX: ENERGY CAL DATE:	MPLE DATE: 12.470 SOIL 25-AUG-2005 04:28	* * *	CONFIDENCE FACTOR: LLD CONSTANT: EFF CAL DATE: 25-AUG-2005	4.65 2.71 04:28

NUCLIDE ACTIVITY SUMMARY

ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
5302.5	391.83	0.17	99.8	5.098E+00	6.676E-01	6.018E-02
4761.5	60.00	0.00	99.8	7.803E-01	2.323E-01	3.524E-02
4385.5	1.83	0.17	80.9	2.936E-02	4.591E-02	7.424E-02
4485.2	1.00	0.00	90.1	1.441E-02	2.889E-02	3.904E-02
4184.4	60.00	0.00	100.2	7.770E-01	2.313E-01	3.509E-02
	5302.5 4761.5 4385.5 4485.2	AREA 5302.5 391.83 4761.5 60.00 4385.5 1.83 4485.2 1.00	AREA 5302.5 391.83 0.17 4761.5 60.00 0.00 4385.5 1.83 0.17 4485.2 1.00 0.00	AREA 5302.5 391.83 0.17 99.8 4761.5 60.00 0.00 99.8 4385.5 1.83 0.17 80.9 4485.2 1.00 0.00 90.1	AREA pCi/ gram 5302.5 391.83 0.17 99.8 5.098E+00 4761.5 60.00 0.00 99.8 7.803E-01 4385.5 1.83 0.17 80.9 2.936E-02 4485.2 1.00 0.00 90.1 1.441E-02	AREA pCi/ gram 2-SIGMA 5302.5 391.83 0.17 99.8 5.098E+00 6.676E-01 4761.5 60.00 0.00 99.8 7.803E-01 2.323E-01 4385.5 1.83 0.17 80.9 2.936E-02 4.591E-02 4485.2 1.00 0.00 90.1 1.441E-02 2.889E-02

-1.89158E-04 3,44344E+03 3.13349E+00 6000 Energy Offset: Energy Slope Quad Energy DKA100: [ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$14_UU.CNF;1 5500 Sample Time: 17-AUG-2005 00:00 Energy (keV) Sample ID : 14 Sample Type: UU 2-SEP-2005 09:48: 0 02:50:00.30 0 02:50:00.00 VPSCR081705SL11 4000 043 Sample Title: Start Time: Time Time Spectrum Title 0 Live Real 20 squnoj

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:51:12.82

Acquisition Start: 2-SEP-2005 09:48:10.01 Detector ID: 43

Real Time: 0 02:50:00.30 Live Time: 0 02:50:00.00 Batch Id: 0508094A-UU

Sample Id: 14

Sample Type: UU

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %E	rr Fit
2 3 4	0 0	4182.45 4342.29 4477.94 4751.80 5302.31	60 2 1 60 392	0 0 0	59.54 0.00 62.67	239.30 292.00 337.00 428.63 616.14	278 323 378	42 29 81	5.88E-03 12 1.96E-04 70 9.80E-05100 5.88E-03 12 3.84E-02 5	.7 .0 .9

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:51:26.29

Acquisition Start: 26-AUG-2005 12:02:03.01

Real Time: 0 16:40:00.10 Live Time: 0 16:40:00.00

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 0 3 0 4 0	4135.85 4361.93 4477.94 4720.19 5259.80	0 1 0 0 1	0 0 0	0.00	298.50 337.00 418.00	278 323 378	42 29 81	0.00E+00 0.0 1.67E-05100.0 0.00E+00 0.0 0.00E+00 0.0 1.67E-05100.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:51:26.58

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 0 3 0 4 0	4182.45* 4342.29* 4477.94* 4751.80* 5302.31*	60 2 1 60 392	0 0 0	59.54 0.00 62.67	239.30 292.00 337.00 428.63 616.14	278 323 378	42 29 81	5.88E-03 12.9 1.79E-04 77.8 9.80E-05100.0 5.88E-03 12.9 3.84E-02 5.1	

Configuration : MCA0: [AMSCOUNT] 00009067\$1

: ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Analyses by

: VPSCR081705SL11 Sample title

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:48:10 Sample date

Sample quantity : 1.1018 gram Sample ID

Sample geometry Sample type : UU

Detector geometry: Detector name : 043

Elapsed real time: 0 02:50:00.30 0.0% Elapsed live time: 0 02:50:00.00

Half life ratio : 8.00

Energy tolerance: 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes

Efficiency type : Average value Efficiencies at : Peak Energy

Abundance limit : 75.00

It	Energy	Area l	FWHM (Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0 0 0	4182.45* 4342.29* 4477.94* 4751.80* 5302.31*		9.54 0.00 2.67	239.30 292.00 337.00 428.63 616.14	180 278 323 378 564	89 25.8 42155.7 29200.0 81 25.8 76 10.1		U-238 U-235 U-236 U-234 U232	0.662 2.503E-02 1.228E-02 0.665 4.35

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:51:40

*	

BATCH ID:	0508094A-UU	*	SAMPLE ID:	15
	17-AUG-2005 00:00	*	ALIQUOT: 1.168E+00	gram
SAMPLE TITLE:	VPSCR081705SL12	*	DETECTOR NUMBER:	044
ACO DATE:	2-SEP-2005 09:48	*	AVERAGE EFFICIENCY:	20.99%
ELAPSED LIVE TIME		*	RECOVERY:	52.44%
TRACER ID:	UU-10A	*	TRACER FWHM (kev):	60.69
LAMBDA VALUE:	605.	*	ROI TYPE: S	TANDARD
TRACER DPM AT SAM	IPLE DATE: 12.551	*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
	25-AUG-2005 04:28	*	EFF CAL DATE: 25-AUG-200	5 04:28
BKG FILENAME:	B 044 26AUG05	*	BKG ELAPSED TIME:	60000.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram	
U232	5302.5	234.32	0.68	99.8	4.842E+00	7.513E-01	1.352E-01	
U-234	4761.5	49.66	0.34	99.8	1.026E+00	3.403E-01	1.120E-01	
U-235	4385.5	3.83	0.17	80.9	9.758E-02	1.036E-01	1.179E-01	
U-236	4485.2	0.83	0.17	90.1	1.899E-02	4.652E-02	1.059E-01	
U-238	4184.4	41.32	0.68	100.2	8.497E-01	3.035E-01	1.346E-01	

3,44108E+03 3,11251E+00 -1,71265E-04 0009 Energy Offset: Energy Slope : Quad Energy DKA100;[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$15_UU.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 Sample ID : Sample Type: Time: Sample 4500 2-SEP-2005 09:48: 0 02:50:00.30 0 02:50:00.00 VPSCR081705SL12 4000 044 Sample Title: Time 3500 Spectrum Start Title Live ம Real 15 10 squnoj

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 183: 197: 211: 225: 239: 267: 281: 295: 309: 323: 337: 365: 379: 3407: 421: 435: 449: 443: 477: 491: 505: 519: 533: 547: 561: 575: 589: 603: 645: 645: 645: 645: 645: 645: 645: 645	000000000000000000000000000000000000000	000000000000000110100000000131000000102144900000000000000000000000000	000000000000001010000000000000000000000	000000000000000000000000000000000000000	000000000000000120010000000000000000000	000000000000000000000000000000000000000	000000000001000300000100000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000114000000000000000000000000	000000000000000000000000000000000000000	0100000000000120000000102110000000121540000000000

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:51:31.89

Detector ID: 44 Acquisition Start: 2-SEP-2005 09:48:33.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.30

Batch Id: 0508094A-UU Sample Id: 15

Sample Type: UU

Pk	It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 3 4	0 0 0	4187.09 4338.35 4485.53 4764.63 5299.53	42 4 1 50 235	0 48.05 0105.83 0 3.11 0 9.42 0 60.69	293.00 342.00 435.68	280 325 380	43 30 82	4.12E-03 15.4 3.92E-04 50.0 9.80E-05100.0 4.90E-03 14.1 2.30E-02 6.5	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:51:38.53

Acquisition Start: 26-AUG-2005 12:02:06.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 0 3 0 4 0	4134.25 4362.43 4478.04 4719.61 5260.01	4 1 1 2 4	0 0 0	0.00 3.11 90.26	225.50 301.00 339.50 420.50 604.50	280 325 380	43 30 82	6.67E-05 50.0 1.67E-05100.0 1.67E-05100.0 3.33E-05 70.7 6.67E-05 50.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:51:38.82

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 3 4	0 0 0	4187.09* 4338.35* 4485.53* 4764.63* 5299.53*	41 4 1 50 234	010 0 0	5.83 3.11 9.42	242.93 293.00 342.00 435.68 618.11	280 325 380	43 30 82	4.05E-03 15.7 3.75E-04 52.4 8.14E-05122.2 4.87E-03 14.2 2.30E-02 6.5	

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL12

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:48:33

Sample ID : 15 Sample quantity : 1.1677 gram

Sample type : UU Sample geometry :

Detector name : 044 Detector geometry:

Energy tolerance: 100.00 keV Half life ratio: 8.00
Errors propagated: Yes Systematic Error: 3.00 %
Efficiency type: Average value Efficiencies at: Peak Energy

Abundance limit : 75.00

Ιt	Energy	Area FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0	4187.09* 4338.35* 4485.53* 4764.63* 5299.53*	41 48.05 4105.83 1 3.11 50 9.42 234 60.69	293.00	181 280 325 380 567	90 31.4 43104.8 30244.4 82 28.5 76 13.1		U-238 U-235 U-236 U-234 U232	0.446 5.117E-02 9.957E-03 0.538 2.54

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:51:51

*

16 SAMPLE ID: 0508094A-UU BATCH ID: gram 17-AUG-2005 00:00 ALIQUOT: 1.022E+00 SAMPLE DATE: 045 VPSCR081705SL13 DETECTOR NUMBER: SAMPLE TITLE: AVERAGE EFFICIENCY: 20.55% ACO DATE: 2-SEP-2005 09:48 100.72% RECOVERY: ELAPSED LIVE TIME: 10200. TRACER FWHM (kev): 41.51 UU-10A TRACER ID: STANDARD 605. ROI TYPE: LAMBDA VALUE: 4.65 CONFIDENCE FACTOR: TRACER DPM AT SAMPLE DATE: 12.563 2.71 LLD CONSTANT: SAMPLE MATRIX: SOIL 25-AUG-2005 04:28 EFF CAL DATE:

ENERGY CAL DATE: 25-AUG-2005 04:28 * EFF CAL DATE: 25-AUG-2005 04:28 BKG FILENAME: B_045_26AUG05 * BKG ELAPSED TIME: 60000.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
U232	5302.5	441.00	0.00	99.8	5.536E+00	7.009E-01	3.401E-02
U-234	4761.5	67.83	0.17	99.8	8.512E-01	2.408E-01	5.806E-02
U-235	4385.5	1.00	0.00	80.9	1.548E-02	3.104E-02	4.195E-02
U-236	4485.2	2.66	0.34	90.1	3.697E-02	4.890E-02	7.535E-02
U-238	4184.4	74.83	0.17	100.2	9.350E-01	2.551E-01	5.782E-02

Analyst

Date

Reviewer

9/2/05

Date

-1.82971E-04 3,45577E+03 3.12631E+00 Offset: Slope Quad Energy Energy Energy DKA100;[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$16_UU.CNF;1 5500 17-AUG-2005 00:00 5000 3 Sample ID : Sample Type: Time: Sample 4500 2-SEP-2005 09:48: 0 02:50:00.20 0 02:50:00.00 VPSCR081705SL13 4000 045 Sample Title: Real Time : Live Time 3500 Spectrum Start Title 70 20 squnoj

Energy (keV)

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 183: 197: 211: 225: 239: 253: 267: 281: 295: 309: 309: 309: 309: 309: 309: 309: 309	00000000000001330000000001100000012011061190000000000000	00000000000000012200000100000130000000014873000000000000000000000000000000000000	000000000011012000000000223000000104040000000000	000000000001001120000000000000000000000	000000000000000000000000000000000000000	00000012000010113000000010203600000010239700000000000000000000000000000000000	0000000000000013000000000010140000000000	000000000000001300001000000113000000010527000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000010002300000000000030010011294000000000100010000000000000000	000000000001001300000100000124100000106080000000000000000000000000000	000000000000000000000000000000000000000	00000000000001440000000010121001000002441250000000000

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:51:45.44

Acquisition Start: 2-SEP-2005 09:48:52.01 Detector ID: 45

Real Time: 0 02:50:00.20

Live Time: 0 02:50:00.00 Batch Id: 0508094A-UU Sample Id: 16

Sample Type: UU

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 3 4	0 0	4189.22 4362.11 4456.50 4766.64 5311.42	75 1 3 68 441	0 0 0	0.00 59.01 31.88	237.92 295.00 326.33 430.13 615.75	274 319 374	43 29 82	7.35E-03 11.5 9.80E-05100.0 2.94E-04 57.7 6.67E-03 12.1 4.32E-02 4.8	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:51:49.40

Acquisition Start: 26-AUG-2005 12:02:09.01

Real Time: 0 16:40:00.10 Live Time: 0 16:40:00.00

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
1 0	4136.22	1	0	3.13	220.50			1.67E-05100.0	
2 0	4362.11	0	0	0.00	295.00			0.00E+00 0.0	
	4476.54	2	0	62.53	333.00			3.33E-05 70.7	
4 0	4720.19	1	0	3.13	414.50			1.67E-05100.0	
	5258.42	0	0	0.00	597.50	560	76	0.00E+00 0.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:51:49.68

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 3 4	0 0 0	4189.22* 4362.11* 4456.50* 4766.64* 5311.42*	75 1 3 68 441	0 0 0	0.00 59.01 31.88	237.92 295.00 326.33 430.13 615.75	274 319 374	43 29 82	7.34E-03 11.6 9.80E-05100.0 2.61E-04 65.7 6.65E-03 12.2 4.32E-02 4.8	

Configuration : MCA0: [AMSCOUNT] 00009067\$1 : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Sample title : VPSCR081705SL13

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:48:52 Sample date

Sample quantity : 1.0222 gram : 16 Sample ID

Sample type : UU
Detector name : 045 Sample geometry

Detector geometry:

Elapsed real time: 0 02:50:00.20 0.0% Elapsed live time: 0 02:50:00.00

Half life ratio : 8.00 Energy tolerance : 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes Efficiencies at : Peak Energy Efficiency type : Average value

Abundance limit : 75.00

It	Energy	Area	FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0	4189.22* 4362.11* 4456.50* 4766.64* 5311.42*	1 3 68	78.11 0.00 59.01 31.88 41.51	237.92 295.00 326.33 430.13 615.75	176 274 319 374 560	90 23.2 43200.0 29131.5 82 24.3 76 9.5		U-238 U-235 U-236 U-234 U232	0.942 1.559E-02 3.724E-02 0.857 5.58

ALPHA SPECTROMETRY REPORT 2-SEP-2005 12:52:00

*

BATCH ID:	0508094A-UU	*	SAMPLE ID:	17
SAMPLE DATE: 1	7-AUG-2005 00:00	*	ALIQUOT: 1.025E+00	gram
SAMPLE TITLE:	VPSCR081705SL14	*	DETECTOR NUMBER:	046
	2-SEP-2005 09:49	*	AVERAGE EFFICIENCY:	20.82%
ELAPSED LIVE TIME:	10200.	*	RECOVERY:	94.47%
TRACER ID:	UU-10A	*	TRACER FWHM (kev):	62.92
LAMBDA VALUE:	606.	*	ROI TYPE:	TANDARD
TRACER DPM AT SAMPI	LE DATE: 12.588	*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
ENERGY CAL DATE: 2!	5-AUG-2005 04:29	*	EFF CAL DATE: 25-AUG-200	5 04:29
BKG FILENAME:	B 046_26AUG05	*	BKG ELAPSED TIME:	60000.

*

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
U232	5302.5	419.83	0.17	99.8	5.534E+00	7.105E-01	6.097E-02
U-234	4761.5	73.66	0.34	99.8	9.706E-01	2.674E-01	7.143E-02
U-235	4385.5	10.00	0.00	80.9	1.625E-01	1.055E-01	4.405E-02
U-236	4485.2	6.00	0.00	90.1	8.757E-02	7.263E-02	3.955E-02
U-238	4184.4	68.83	0.17	100.2	9.030E-01	2.548E-01	6.071E-02

Muscher Analyst

9.2.00

Reviewer

9/2/05

Date

-1.96714E-04 3,45486E+03 3.13726E+00 9009 Energy Offset: Energy Slope Energy Quad DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-UU\$17_UU.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) Sample Time: 17-Sample ID : 17 Sample Type: UU VPSCR081705SL14 2-SEP-2005 09:49: 0 02:50:00.10 0 02:50:00.00 046 Sample Title: Live Time : Real Time : Start Time: Spectrum Title 10 20 squnog

Channel												0	0	0
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 239: 211: 225: 239: 253: 267: 295: 309: 323: 351: 365: 379: 421: 435: 449: 449: 449: 455: 575: 589: 503: 645: 659: 645: 701: 715: 729: 743: 757: 771: 785: 799: 813: 855: 869: 883: 897: 909: 909: 909: 909: 909: 909: 909: 9	00000010000001100001000000004100000101013711100000010000000000	000000001000001020000010000011300000001038400000010000000000	0000000010000024000100001001110000001100479000000000000	000000000000001041000002000120500010001001410000000000	100000000000000230002100000014401101001214250000000000000	10000000000100014000100000100331100000102627000000000000000000000000000	000000000000001300000000000000000000000	0000000000011013000120000013000000103470000000000000000000000	0100000001000112100000001010021200100002026600000000	0000000000000000000000000001100000000127200000000	00100000000000024000110110003100000011010370000000000000	000010100001320000000002130000010000272501000000000000000000000000	00000000000000010300001100000013400000000	000000000000000000000000000000000000000

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:51:56.00

Acquisition Start: 2-SEP-2005 09:49:09.01 Real Time: 0 02:50:00.10 Detector ID: 46

Live Time: 0 02:50:00.00

Sample Id: 17 Batch Id: 0508094A-UU

Sample Type: UU

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0	4182.80 4384.67 4474.25 4757.00 5298.57	69 10 6 74 420	0 0	4.61 3.14 73.78	235.51 302.10 331.83 426.46 611.10	274 319 374	42 29 81	6.76E-03 9.80E-04 5.88E-04 7.25E-03 4.12E-02	31.6 40.8 11.6	

Background Counts Within Peak Regions Generated: 2-SEP-2005 12:51:57.92

Acquisition Start: 26-AUG-2005 12:02:12.01

Real Time: 0 16:40:00.10 Live Time: 0 16:40:00.00

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 0 3 0 4 0	4135.54 4361.72 4477.76 4719.97 5259.15	1 0 0 2 1	0 0	0.00 0.00 72.16	220.00 294.50 333.00 414.00 597.50	274 319 374	42 29 81	1.67E-05100.0 0.00E+00 0.0 0.00E+00 0.0 3.33E-05 70.7 1.67E-05100.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 12:51:58.23

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	4182.80* 4384.67* 4474.25* 4757.00* 5298.57*	69 10 6 74 420	0 0	4.61 3.14 73.78	235.51 302.10 331.83 426.46 611.10	274 319 374	42 29 81	6.75E-03 9.80E-04 5.88E-04 7.22E-03 4.12E-02	31.6 40.8 11.7	

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

: VPSCR081705SL14 Sample title

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 09:49:09 Sample date

Sample quantity : 1.0246 gram : 17 Sample ID

Sample geometry Sample type : UU

Detector name : 046 Detector geometry:

Elapsed real time: 0 02:50:00.10 0.0% Elapsed live time: 0 02:50:00.00

8.00 Energy tolerance : 100.00 keV Half life ratio : Systematic Error : 3.00 % Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

It	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0 0 0 0	4182.80* 4384.67* 4474.25* 4757.00* 5298.57*	10 6 74	4.61 3.14 73.78	235.51 302.10 331.83 426.46 611.10	176 274 319 374 560	42 29 81	24.1 63.2 81.6 23.4 9.8		U-238 U-235 U-236 U-234 U232	0.853 0.154 8.273E-02 0.917 5.23

SECTION IX ANALYTICAL DATA (ISOTOPIC THORIUM)

05-08094 Thiso Run 1

Printed: 9/2/2005 6:40 AM Page 1 of 3

Work Order	05-08094	Inte
Analysis Code	ThISO	0
Run	_	
Date Received	8/19/2005	0
Lab Deadline	9/9/2005	0
Client	Missouri Dept. of Natural Resources	0
Project	B3Z02092	0
Report Level	4	
Activity Units	pCi	0
Aliquot Units	5	0
Matrix	SO	
Method	EML Th-01 Modified	
Instrument Type	Alpha Spectroscopy	_
Radiometric Tracer	Th-229	
Radiometric Sol#	Th-18a	
Tracer Act (dpm/g)	22.482	
Carrier		
Carrier Conc (mg/ml)		

ork Order	05-08094	Internal Fraction	Sample Desc	Client ID	Login CPM	Sample Date	Sample Aliquot
lysis Code	ThISO	2	rcs	SOT		08/22/05 00:00	1.0000E+00
Run	_	05	MBL	BLANK		08/22/05 00:00	1.0000E+00
Received	8/19/2005	03	DUP	VPSCR081705SL01	42	08/17/05 10:02	9.9220E-01
o Deadline	9/9/2005	4	00	VPSCR081705SL01	42	08/17/05 10:02	9.8360E-01
Client	Missouri Dept. of Natural Resources	05	TRG	VPSCR081705SL02	35	08/17/05 10:04	9.9440E-01
Project	B3Z02092	90	TRG	VPSCR081705SL03	45	08/17/05 10:08	1.0213E+00
port Level	4	07	TRG	VPSCR081705SL04	38	08/17/05 10:09	1.0194E+00
ivity Units	pCi	80	TRG	VPSCR081705SL05	41	08/17/05 10:11	1.0428E+00
quot Units	5)	60	TRG	VPSCR081705SL06	38	08/17/05 10:18	1.0074E+00
Matrix	SO	9	TRG	VPSCR081705SL07	41	08/17/05 10:20	1.0049E+00
Method	EML Th-01 Modified	=	TRG	VPSCR081705SL08	47	08/17/05 10:21	1.0073E+00
ment Type	Alpha Spectroscopy	12	TRG	VPSCR081705SL09	37	08/17/05 10:23	1.0569E+00
tric Tracer	Th-229	13	TRG	VPSCR081705SL10	30	08/17/05 10:25	9.9810E-01
netric Sol#	Th-18a	4	TRG	VPSCR081705SL11	42	08/17/05 10:27	9.9010E-01
Act (dpm/g)	22.482	5	TRG	VPSCR081705SL12	37	08/17/05 10:30	9.9610E-01
Carrier		9	TRG	VPSCR081705SL13	46	08/17/05 10:32	1.0382E+00
nc (mg/ml)		17	TRG	VPSCR081705SL14	41	08/17/05 10:44	1.0774E+00

05-08094 ThISO Run 1

Printed: 9/2/2005 6:40 AM Page 2 of 3

Mean SAF SAF %Rec 1* 2*																				
Grav Filter Grav Net (g) % Rec				The second secon																
Grav Filter Final (g)	,																			
Grav Carrier Grav Filter Added (ml) Tare (g)																				
Radiometric % Rec				**************************************																
Tracer Total Radiometric ACT (dpm) Tracer (pCi)	10.4	10.3	10.3	10.3	40.5	7.0.	10.3	10.3	10.3	10.3	10.3 10.3 10.2 10.2 10.2	10.3 10.3 10.2 10.2 10.2	10.3 10.3 10.2 10.2 10.2 10.2	10.3 10.3 10.2 10.2 10.2 10.2	10.3 10.3 10.2 10.2 10.2 10.2 10.2	10.3 10.3 10.2 10.2 10.2 10.2 10.2 10.2	10.3 10.3 10.2 10.2 10.2 10.2 10.2 10.2	10.3 10.3 10.2 10.2 10.2 10.2 10.2 10.2 10.2	10.3 10.3 10.2 10.2 10.2 10.2 10.2 10.2 10.2	10.3 10.3 10.2 10.2 10.2 10.2 10.2 10.2 10.2
Tracer Aliquot (g)	0.4646	0.4586	0.4562	0.4564	0.4552		0.4565	0.4565	0.4565 0.4560 0.4536	0.4565 0.4560 0.4536 0.4543	0.4565 0.4560 0.4536 0.4543 0.4543	0.4565 0.4560 0.4536 0.4543 0.4543	0.4565 0.4560 0.4536 0.4543 0.4543 0.4517	0.4565 0.4560 0.4536 0.4543 0.4517 0.4530	0.4565 0.4560 0.4536 0.4543 0.4517 0.4530 0.4520	0.4565 0.4560 0.4536 0.4543 0.4517 0.4538 0.4530 0.4534	0.4565 0.4560 0.4536 0.4543 0.4543 0.4538 0.4530 0.4530 0.4536	0.4565 0.4560 0.4536 0.4543 0.4517 0.4538 0.4520 0.4536 0.4525	0.4565 0.4560 0.4536 0.4543 0.4517 0.4538 0.4530 0.4536 0.4535 0.4536 0.4535	0.4565 0.4560 0.4536 0.4543 0.4517 0.4530 0.4530 0.4536 0.4536 0.4536
Sample Desc	SOT	MBL	DUP	00	TRG		TRG	TRG	TRG TRG	TRG TRG	TRG TRG TRG	TRG TRG TRG TRG TRG TRG	TRG	TRG	TRG	TRG TRG TRG TRG TRG TRG	TRG TRG <td>TRG TRG TRG<td>TRG TRG TRG<td>TRG TRG TRG</td></td></td>	TRG TRG <td>TRG TRG TRG<td>TRG TRG TRG</td></td>	TRG TRG <td>TRG TRG TRG</td>	TRG TRG

Internal Fraction	Sample Desc	Rough Prep Date	Rough Prep By	Prep Date	Prep By	Sep t0 Date/Time	Sep t0 By	Sep t1 Date/Time	Sep t1 By
10	CCS			08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON	-	
02	MBL			08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
03	DUP			08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
8	00	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
02	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
90	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
07	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
80	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
60	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
19	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
7	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
12	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
13	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
4	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
15	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
16	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		
17	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:43	JBARNARD	09/02/05 06:39	BNEWTON		

uny

Analysis Code

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-ThISO-1

Printed: 9/2/2005 12:53 PM Page 1 of 3

Lab Fraction	01	05	03	20	02	90	07	80	60	19	7	12	13	4	15	16	17	***	
Nuclide	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228		
Sample Desc	SOT	MBL	DUP	8	TRG														
Client Identification	SJT	BLANK	VPSCR081705SL01	VPSCR081705SL01	VPSCR081705SL02	VPSCR081705SL03	VPSCR081705SL04	VPSCR081705SL05	VPSCR081705SL06	VPSCR081705SL07	VPSCR081705SL08	VPSCR081705SL09	VPSCR081705SL10	VPSCR081705SL11	VPSCR081705SL12	VPSCR081705SL13	VPSCR081705SL14		
Activity Units	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	bCi/g	pCi/g										
Results	5.06E+00	-2.14E-02	4.91E-01	5.86E-01	5.43E-01	2.85E-01	7.37E-01	4.74E-01	1.27E+00	8.23E-01	7.93E-01	1.07E+00	1.06E+00	3.79E-01	4.23E-01	8.59E-01	1.05E+00		
Error Estimate	9.26E-01	1.95E-02	1.86E-01	2.24E-01	2.02E-01	1.43E-01	2.86E-01	1.92E-01	3.92E-01	2.54E-01	2.44E-01	3.16E-01	3.10E-01	1.79E-01	1.85E-01	3.02E-01	0 2.87E-01		
MDA	9.85E-02	1.76E-01	1.02E-01	1.01E-01	1.13E-01	1.10E-01	1.27E-01	1.24E-01	9.23E-02	9.09E-02	1.03E-01	9.30E-02	1.39E-01	1.15E-01	1.59E-01	1.70E-01	1.22E-01		
LCS Known	4.74E+00																		
LCS %R	106.76		7 5																
LCS Flag	ğ																		
RPD Flag			9K																
MDA Flag	9 X	Ą	ð	9 X	Ö	Š	OK	OK	Š	Ö	OK	o K	OK	ok	ok	o X	Ą		
Blank Flag		용									,								

Eberline Services Work Order

uny

Analysis Code

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-ThISO-1

Printed: 9/2/2005 12:53 PM Page 2 of 3

Lab Fraction		ì				!				1								
Nuclide	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	TH-228	
Sample Desc	SOT	MBL	DUP	8	TRG													
Sample Date	00:00 20/22/80	08/22/05 00:00	08/17/05 10:02	08/17/05 10:02	08/17/05 10:04	08/17/05 10:08	08/17/05 10:09	08/17/05 10:11	08/17/05 10:18	08/17/05 10:20	08/17/05 10:21	08/17/05 10:23	08/17/05 10:25	08/17/05 10:27	08/17/05 10:30	08/17/05 10:32	08/17/05 10:44	
Sample Aliquot	1.00E+00	1.00E+00	9.92E-01	9.84E-01	9.94E-01	1.02E+00	1.02E+00	1.04E+00	1.01E+00	1.00E+00	1.01E+00	1.06E+00	9.98E-01	9.90E-01	9.96E-01	1.04E+00	1.08E+00	
Radiometric % Rec	101.89	51.90	93.73	76.09	87.84	85.23	66.92	81.64	63.11	87.62	93.63	76.45	86.34	71.31	83.30	66.57	102.65	
Grav % Rec																		
Mean % Rec	and the second s												•					n de la companya de l
SAF																		
Sep t0 Date/Time	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	9/2/2005 6:39	
Sep t1 Date/Time	and the state of t	and the state of t																

Eberline Services Work Order

21.5

20.3

20.6

21.2

20.9

20.6

OSI41

Analysis Code

uny

18.5

20.5

20.9

21.2

21.7

21.3

20.6

Eberline Services Oak Ridge Laboratory

Sample Desc	Counting Date/Time	Hafflife (days)	Detect	Carrier	Count	Counts	Bkg CPM	# #
	09/02/05 08:08		A_Spec	-	170.1	4.18 E+02	8.00 E-03	
	09/02/05 08:08		A_Spec	7	170.02	-8.50 E-01	5.00 E-03	
	09/02/05 08:09		A_Spec	ო	170.05	3.50 E+01	6.00 E-03	
	09/02/05 08:09		A_Spec	2	170.08	3.45 E+01	3.00 E-03	
	09/02/05 08:09		A_Spec	9	170.13	3.68 E+01	7.00 E-03	
	09/02/05 08:10		A_Spec	7	170.1	170.1 1.90 E+01	6.00 E-03	
	09/02/05 08:10		A_Spec	∞	170.08	3.45 E+01	3.00 E-03	
	09/02/05 08:10		A_Spec	G	170.05	170.05 3.06 E+01	8.00 E-03	
	09/02/05 08:10		A_Spec	10	170.12	6.28 E+01	1.00 E-03	
	09/02/05 08:11		A_Spec	1	170.08	5.83 E+01	4.00 E-03	
	09/02/05 08:11		A_Spec	12	170.05	5.88 E+01	7.00 E-03	
	09/02/05 08:11		A_Spec	13	170	170 6.85 E+01	3.00 E-03	
	09/02/05 08:12		A_Spec	14	170.05	170.05 7.00 E+01	1.20 E-02	
	09/02/05 08:12		A_Spec	15	170	170 2.13 E+01	4.00 E-03	
	09/02/05 08:12		A_Spec	16	170.08	2.73 E+01	1.60 E-02	
	09/02/05 08:50		A_Spec	17	170.13	170.13 4.51 E+01	1.10 E-02	
	09/02/05 08:50		A_Spec	18	170.08	170.08 8.36 E+01	1.40 E-02	,
ļ					Add Mark A 1991			

†6080-90

Eberline Services Work Order

20.5

19.4

21.5

20.9

Missouri Dept. of Natural Resources

uny

Analysis Code

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-ThISO-1

Printed: 9/2/2005 12:53 PM Page 1 of 3

L Fra			0		os)80							ept. of N		
Lab Nuclide Fraction	01 тн-230	02 тн-230	03 тн-230	04 TH-230	05 тн-230	.HT. ∂0	07 TH-	1H.	O9 TH:	10 TH-	11 TH.	12 TH-	13 тн-	14 TH-	15 TH-	16 TH-	17 TH		
lide	230	230	230	230	230	TH-230	ТН-230												
Sample Desc	SOT	MBL	DUP	8	TRG		+												
Client	SOT	BLANK	VPSCR081705SL01	VPSCR081705SL01	VPSCR081705SL02	VPSCR081705SL03	VPSCR081705SL04	VPSCR081705SL05	VPSCR081705SL06	VPSCR081705SL07	VPSCR081705SL08	VPSCR081705SL09	VPSCR081705SL10	VPSCR081705SL11	VPSCR081705SL12	VPSCR081705SL13	VPSCR081705SL14		11 100 to 11 11 11 11 11 11 11 11 11 11 11 11 11
Activity Units	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	bCi/g	pCi/g		
Results	5.72E+00	2.09E-01	1.40E+00	1.39E+00	2.41E+00	1.46E+00	1.40E+00	1.86E+00	3.75E+00	1.33E+00	2.93E+00	1.98E+00	3.68E+00	1.32E+00	1.18E+00	5.41E+00	4.41E+00		
Error Estimate	1.03E+00	1.57E-01	3.59E-01	3.85E-01	5.41E-01	3.79E-01	4.27E-01	4.55E-01	8.59E-01	3.46E-01	6.10E-01	4.82E-01	7.62E-01	3.83E-01	3.32E-01	0 1.14E+00	0 8.43E-01		
MDA	7.31E-02	1.65E-01	1.21E-01	1.17E-01	1.02E-01	6.85E-02	1.14E-01	7.04E-02	1.62E-01	9.10E-02	8.69E-02	1.01E-01	8.09E-02	1.78E-01	1.13E-01	1.23E-01	6.71E-02		
LCS	5.33E+00															i i			
LCS %R	107.35																	j	
LCS Flag	Ş	5 2 4 4																	
RPD Flag			Š					Alaba e e											
MDA Flag	Š	Š	Š	ş	Š	ş	OK	Š	Š	충	Ą	Š	Ą	Ą	Ą	9 Y	Ą		
Blank Flag		ş																	

Eberline Services Work Order

uny

Analysis Code

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-ThISO-1

Printed: 9/2/2005 12:53 PM Page 2 of 3

Lab Nuclide Sample Sample Radiometric Area Grav Area Mean Area SAF SAP 10 Approlate Sap 10 Approlate Sap 10 Approlate Sap 11 Approlate </th <th>issouri Dept. of Natural Resources</th>	issouri Dept. of Natural Resources
Sample Desc	10 10 17 17 17 19 19 19 19 19 19 19 19 19 19 19 19 19
Sample Sep t0 Sep t0<	TH-230 TH-230 TH-230 TH-230 TH-230 TH-230
Sample Radiometric Grav Mean SAF Sep t0 Aliquot % Rec % Rec % Rec Date/Time 1.00E+00 101.89 9/2/2005 6:39 9.92E-01 93.73 9/2/2005 6:39 9.84E-01 76.09 9/2/2005 6:39 1.02E+00 85.23 9/2/2005 6:39 1.02E+00 66.92 9/2/2005 6:39 1.04E+00 81.64 9/2/2005 6:39	TRG
Radiometric Grav Mean % Rec Sep t0 Date/Time 101.89 % Rec % Rec 9/2/2005 6:39 51.90 9/2/2005 6:39 9/2/2005 6:39 76.09 9/2/2005 6:39 9/2/2005 6:39 85.23 9/2/2005 6:39 66.92 9/2/2005 6:39 81.64 9/2/2005 6:39	08/17/05 10:20 08/17/05 10:21 08/17/05 10:25 08/17/05 10:27 08/17/05 10:32 08/17/05 10:32
Grav Mean SAF Sep to Date/Time 89 89 89 89 89 89 89 89 89 89 89 89 89	1.00E+00 1.00E+00 1.06E+00 9.96E-01 1.04E+00
Mean % Rec Sep t0 % Rec 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39	87.62 93.63 93.63 71.31 83.30 66.57
SAF Sep t0 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39	
Sep t0 Date/Time 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39	
05 6:39 05 6:39 05 6:39 05 6:39 05 6:39 05 6:39	
Sep t1 Date/Time	9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39 9/2/2005 6:39

Eberline Services Work Order

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-ThISO-1

Printed: 9/2/2005 12:53 PM Page 3 of 3

01 TH-230 LCS 0900205 08:06 A_Spec 1 170.1 472 E+02 3.00 E-03 21.1 02 TH-230 MBL 0900205 08:06 A_Spec 2 170.05 121 E+02 1.00 E-03 20.5 03 TH-230 DUP 0900205 08:09 A_Spec 5 170.05 121 E+02 1.00 E-03 20.5 05 TH-230 TRG 0900205 08:09 A_Spec 5 170.05 121 E+02 50.0 E-03 20.5 06 TH-230 TRG 0900205 08:10 A_Spec 7 170.13 168 E+02 50.0 E-03 20.5 07 TH-230 TRG 0900205 08:10 A_Spec 8 170.05 122 E+01 100 E-03 20.1 10 TH-230 TRG 0900205 08:10 A_Spec 11 170.13 168 E+02 4.00 E-03 20.1 11 TH-230 TRG 0900205 08:11 A_Spec 12 170.05 122 E+02 4.00 E-03 20.1 12 TH-230 TRG 0900205 08:12 A_Spec<	Lab Fraction	Nuclide	Sample Desc	Counting Date/Time	Hafflife (days)	Detect	Carrier	Count	Counts	Bkg CPM	Eff
TH-230 MBL 0900205 08:08 A_Spec 2 170.02 8:32 E+00 4.00 E-03 TH-230 DUP 0900205 08:09 A_Spec 3 170.05 1.01 E+02 1.00 E-02 TH-230 TRG 0900205 08:09 A_Spec 6 170.13 1.68 E+02 5.00 E-03 TH-230 TRG 0900205 08:10 A_Spec 6 170.13 1.68 E+01 1.00 E-03 TH-230 TRG 0900205 08:10 A_Spec 7 170.13 1.68 E+01 1.00 E-03 TH-230 TRG 0900205 08:10 A_Spec 10 170.13 1.88 E+01 1.00 E-03 TH-230 TRG 0900205 08:11 A_Spec 11 170.05 1.22 E+02 1.00 E-03 TH-230 TRG 0900205 08:11 A_Spec 17 170.12 188 E+02 4.00 E-03 TH-230 TRG 0900205 08:11 A_Spec 17 170.05 2.07 E+03 1.00 E-03 TH-230 TRG 0900205 08:12 A_Spec 17 170.12 8E+02 2.00 E-03 TH-230 TRG	10	TH-230	SOT	09/02/05 08:08		A_Spec	-	170.1	4.72 E+02	3.00 E-03	21.5
TH-230 DUP 09/02/05 08:09 A_Spec 3 170.08 1.22 E+01 1.00 E-02 TH-230 TRG 09/02/05 08:09 A_Spec 5 170.08 8.32 E+01 5.00 E-03 TH-230 TRG 09/02/05 08:10 A_Spec 7 170.13 1.68 E+02 5.00 E-03 TH-230 TRG 09/02/05 08:10 A_Spec 7 170.13 1.68 E+01 1.00 E-03 TH-230 TRG 09/02/05 08:10 A_Spec 17 170.13 1.88 E+01 1.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 10 170.12 1.88 E+02 1.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 11 170.08 9.53 E+01 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 13 170 1.28 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 170 0.05 2.0 E+02 2.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 15 170 0.5 2.0 E+02 2.00 E-03 TH-230 TRG	02	TH-230	MBL	09/02/05 08:08		A_Spec	7	170.02	8.32 E+00	4.00 E-03	20.3
TH-230 DO 09/02/05 08:09 A_Spec 5 170.08 8.22 E+01 5.00 E-03 TH-230 TRG 09/02/05 08:10 A_Spec 6 170.13 1.66 E+02 5.00 E-03 TH-230 TRG 09/02/05 08:10 A_Spec 8 170.08 6.87 E+01 1.00 E-03 TH-230 TRG 09/02/05 08:10 A_Spec 10 170.12 1.88 E+02 1.00 E-03 TH-230 TRG 09/02/05 08:10 A_Spec 11 170.08 6.72 E+02 1.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 11 170.08 9.33 E+01 4.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 12 170.05 2.0 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 13 170.12 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 14 170.05 2.47 E+02 2.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 16 170.08 1.70 E+01 6.00 E-03 TH-230 <td< th=""><th>03</th><th>TH-230</th><th>DUP</th><th>09/02/05 08:09</th><th></th><th>A_Spec</th><th>m</th><th>170.05</th><th>1.01 E+02</th><th>1.00 E-02</th><th>20.6</th></td<>	03	TH-230	DUP	09/02/05 08:09		A_Spec	m	170.05	1.01 E+02	1.00 E-02	20.6
TH-230 TRG 09/02/05 08:09 A_Spec 6 170.13 1.66 E+02 5.00 E-03 TH-230 TRG 09/02/05 08:10 A_Spec 7 170.19 88 E+01 1.00 E-03 TH-230 TRG 09/02/05 08:10 A_Spec 8 170.08 6.57 E+01 1.00 E-03 TH-230 TRG 09/02/05 08:10 A_Spec 10 170.12 1.88 E+02 1.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 11 170.05 1.22 E+02 1.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 12 170.05 2.20 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 13 170 1.28 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 15 170 0.55 E+01 1.50 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 16 170.08 1.70 E+01 1.50 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 17 170.01 2.20 E+02 4.00 E-03 TH-230	04	TH-230	8	09/02/05 08:09		A_Spec	ις	170.08	8.32 E+01	5.00 E-03	21.2
TH-230 TRG 09/02/05 08:10 A_Spec 7 170.1 9.88 E+01 1.00 E-03 TH-230 TRG 09/02/05 08:10 A_Spec 8 170.06 6.7 E+01 2.00 E-03 TH-230 TRG 09/02/05 08:10 A_Spec 9 170.05 1.22 E+02 1.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 10 170.12 1.88 E+02 8.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 11 170.05 2.20 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 13 170.12 8 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 13 170.12 8 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 15 170.05 2.47 E+02 2.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 16 170.08 2.47 E+02 2.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 17 170.13 2.88 E+02 4.00 E-03 TH-230	05	TH-230	TRG	09/02/05 08:09		A_Spec	9	170.13	1.66 E+02	5.00 E-03	20.9
TH-230 TRG 09/02/05 08:10 A_Spec 8 170.08 6.57 E+01 2.00 E-03 TH-230 TRG 09/02/05 08:10 A_Spec 9 170.05 1.22 E+02 1.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 10 170.12 1.88 E+02 6.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 17 170.05 2.20 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 13 170 1.28 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 14 170.05 2.20 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 15 170 7.55 E+01 1.50 E-02 TH-230 TRG 09/02/05 08:12 A_Spec 16 170.08 7.70 E+01 6.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 17 170.13 2.88 E+02 2.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 17 170.03 3.7 E+02 2.00 E-03	90	TH-230	TRG	09/02/05 08:10		A_Spec	7	170.1	9.88 E+01	1.00 E-03	20.6
TH-230 TRG 09/02/05 08:10 A_Spec 9 170.05 1.22 E+02 1.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 10 170.12 1.88 E+02 1.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 11 170.08 9.33 E+01 4.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 13 170 1.28 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 14 170.05 2.47 E+02 2.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 15 170.05 2.47 E+02 2.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 15 170.05 2.47 E+02 2.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 16 170.08 7.70 E+01 6.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 17 170.013 2.88 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 17 170.013 2.00 E-03	07	TH-230	TRG	09/02/05 08:10		A_Spec	∞	170.08	6.67 E+01	2.00 E-03	18.5
TH-230 TRG 09/02/05 08:10 A_Spec 10 170.12 1.88 E+02 8.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 11 170.05 9.53 E+01 4.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 12 170.05 2.20 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 13 170 1.28 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 14 170.05 2.47 E+02 2.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 15 170 7.55 E+01 1.50 E-02 TH-230 TRG 09/02/05 08:50 A_Spec 16 170.08 7.70 E+01 6.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 17 170.13 2.88 E+02 2.00 E-03	80	TH-230	TRG	09/02/05 08:10		A_Spec	თ	170.05	1.22 E+02	1.00 E-03	20.5
TH-230 TRG 09/02/05 08:11 A_Spec 11 170.08 9.53 E+01 4.00 E-03 TH-230 TRG 09/02/05 08:11 A_Spec 12 170.05 2.20 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 13 170 1.28 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 15 170 7.55 E+01 1.50 E-02 TH-230 TRG 09/02/05 08:12 A_Spec 16 170 7.55 E+01 1.50 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 16 170.08 7.70 E+01 6.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 17 170.13 2.88 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 18 170.08 3.57 E+02 2.00 E-03	60	TH-230	TRG	09/02/05 08:10		A_Spec	10	170.12	1.88 E+02	8.00 E-03	20.9
TH-230 TRG 09/02/05 08:11 A_Spec 12 170.128 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 13 170 1.28 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 14 170.05 2.47 E+02 2.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 15 170 7.55 E+01 1.50 E-02 TH-230 TRG 09/02/05 08:12 A_Spec 16 170 7.55 E+01 1.50 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 16 170.08 7.70 E+01 6.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 17 170.13 2.88 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 18 170.08 3.57 E+02 2.00 E-03	10	TH-230	TRG	09/02/05 08:11		A_Spec	7	170.08	9.53 E+01	4.00 E-03	21.7
TH-230 TRG 09/02/05 08:11 A_Spec 13 170 1.28 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 14 170.05 2.47 E+02 2.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 15 170 7.55 E+01 1.50 E-02 TH-230 TRG 09/02/05 08:50 A_Spec 16 170.08 7.70 E+01 6.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 17 170.13 2.88 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 18 170.08 3.57 E+02 2.00 E-03	-	TH-230	TRG	09/02/05 08:11		A_Spec	12	170.05	2.20 E+02	4.00 E-03	21.2
TH-230 TRG 09/02/05 08:12 A_Spec 14 170.05 2.47 E+02 2.00 E-03 TH-230 TRG 09/02/05 08:12 A_Spec 15 170 7.55 E+01 1.50 E-02 TH-230 TRG 09/02/05 08:50 A_Spec 16 170.08 7.70 E+01 6.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 17 170.13 2.88 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 18 170.08 3.57 E+02 2.00 E-03	12	TH-230	TRG	09/02/05 08:11		A_Spec	13	170	1.28 E+02	4.00 E-03	21.3
TH-230 TRG 09/02/05 08:12 A_Spec 15 170 7.55 E+01 1.50 E-02 TH-230 TRG 09/02/05 08:50 A_Spec 16 170.08 7.70 E+01 6.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 17 170.13 2.88 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 18 170.08 3.57 E+02 2.00 E-03	13	TH-230	TRG	09/02/05 08:12		A_Spec	14	170.05	2.47 E+02	2.00 E-03	20.6
TH-230 TRG 09/02/05 08:12 A_Spec 16 170.08 7.70 E+01 6.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 17 170.13 2.88 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 18 170.08 3.57 E+02 2.00 E-03	14	TH-230	TRG	09/02/05 08:12		A_Spec	15	170	7.55 E+01	1.50 E-02	21.5
TH-230 TRG 09/02/05 08:50 A_Spec 17 170.13 2.88 E+02 4.00 E-03 TH-230 TRG 09/02/05 08:50 A_Spec 18 170.08 3.57 E+02 2.00 E-03	15	TH-230	TRG	09/02/05 08:12		A_Spec	16	170.08	7.70 E+01	6.00 E-03	20.9
TH-230 TRG 09/02/05 08:50 A_Spec 18 170.08 3.57 E+02 2.00 E-03	16	TH-230	TRG	09/02/05 08:50		A_Spec	17	170.13	2.88 E+02	4.00 E-03	20.5
	17	TH-230	TRG	09/02/05 08:50		A_Spec	18	170.08	3.57 E+02	2.00 E-03	19.4
	and the second s										

76080-90

Eberline Services Work Order

ОЅІЧТ

Analysis Code

unу

Missouri Dept. of Natural Resources

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-ThISO-1

Printed: 9/2/2005 12:54 PM Page 1 of 3

Blank Flag		Ş																	
MDA Flag	Š	Š	ÖK	8 K	Ŏ	ş	ŏ	O X	OK	OK W	OK	O Y	Š	Š	Š	Š	OK		
RPD Flag			<u>N</u>																
LCS Flag	ş					:													
LCS %R	104.40		911								-								
LCS Known	4.74E+00																		
MDA	9.42E-02	1.76E-01	9.04E-02	4.52E-02	7.86E-02	8.91E-02	1.14E-01	7.03E-02	5.40E-02	7.52E-02	6.13E-02	1.14E-01	6.90E-02	1.22E-01	8.27E-02	1.39E-01	3.35E-02		
Error Estimate	9.08E-01	1.03E-01	2.29E-01	2.84E-01	1.70E-01	1.63E-01	2.76E-01	2.17E-01	3.94E-01	2.39E-01	2.51E-01	2.49E-01	3.46E-01	2.11E-01	2.07E-01	3.52E-01	2.76E-01		
Results	4.95E+00	7.91E-02	7.09E-01	8.85E-01	4.15E-01	3.77E-01	7.08E-01	6.05E-01	1.30E+00	7.59E-01	8.46E-01	7.39E-01	1.28E+00	5.10E-01	5.59E-01	1.12E+00	1.01E+00		
Activity Units	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g		
Client Identification	SOT	BLANK	VPSCR081705SL01	VPSCR081705SL01	VPSCR081705SL02	VPSCR081705SL03	VPSCR081705SL04	VPSCR081705SL05	VPSCR081705SL06	VPSCR081705SL07	VPSCR081705SL08	VPSCR081705SL09	VPSCR081705SL10	VPSCR081705SL11	VPSCR081705SL12	VPSCR081705SL13	VPSCR081705SL14		
Sample Desc	SOT	MBL	DUP	8	TRG														
Nuclide	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	and the second	
Lab Fraction	10	02	03	04	05	90	20	80	60	9	-	12	13	4	15	16	17		

76080-90

Eberline Services Work Order

OSI41

Analysis Code

uny

Missouri Dept. of Natural Resources

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-ThISO-1

Printed: 9/2/2005 12:54 PM Page 2 of 3

Lab Fraction	Nuclide	Sample Desc	Sample Date	Sample Aliquot	Radiometric % Rec	Grav % Rec	Mean % Rec	SAF	Sep t0 Date/Time	Sep t1 Date/Time
01	TH-232	SOT	08/22/05 00:00	1.00E+00	101.89				9/2/2005 6:39	
02	TH-232	MBL	08/22/05 00:00	1.00E+00	51.90				9/2/2005 6:39	200000 Till 1
03	TH-232	DUP	08/17/05 10:02	9.92E-01	93.73				9/2/2005 6:39	
04	TH-232	8	08/17/05 10:02	9.84E-01	76.09				9/2/2005 6:39	
05	TH-232	TRG	08/17/05 10:04	9.94E-01	87.84				9/2/2005 6:39	
90	TH-232	TRG	08/17/05 10:08	1.02E+00	85.23				9/2/2005 6:39	and the state of t
20	TH-232	TRG	08/17/05 10:09	1.02E+00	66.92				9/2/2005 6:39	
80	TH-232	TRG	08/17/05 10:11	1.04E+00	81.64				9/2/2005 6:39	
60	TH-232	TRG	08/17/05 10:18	1.01E+00	63.11				9/2/2005 6:39	
10	TH-232	TRG	08/17/05 10:20	1.00E+00	87.62				9/2/2005 6:39	
7	TH-232	TRG	08/17/05 10:21	1.01E+00	93.63				9/2/2005 6:39	
12	TH-232	TRG	08/17/05 10:23	1.06E+00	76.45				9/2/2005 6:39	
13	TH-232	TRG	08/17/05 10:25	9.98E-01	86.34				9/2/2005 6:39	
41	TH-232	TRG	08/17/05 10:27	9.90E-01	71.31				9/2/2005 6:39	
15	TH-232	TRG	08/17/05 10:30	9.96E-01	83.30				9/2/2005 6:39	
16	TH-232	TRG	08/17/05 10:32	1.04E+00	66.57				9/2/2005 6:39	
17	TH-232	TRG	08/17/05 10:44	1.08E+00	102.65				9/2/2005 6:39	
	- Control of the Cont									
	, C. C.									

†6080-90

Eberline Services Work Order

OSI41

Analysis Code

unษ

Missouri Dept. of Natural Resources

20.6

4.00 E-03

21.2

0.00 E+00

20.3

5.00 E-03

21.5

7.00 E-03

击

Bkg CPM 20.9

2.00 E-03

20.6

3.00 E-03

18.5

2.00 E-03

20.5

1.00 E-03

20.9

0.00 E+00

21.7

2.00 E-03

21.2

1.00 E-03

6.00 E-03

20.6

1.00 E-03

21.5

5.00 E-03

20.9

2.00 E-03

	,	u	nЫ	6	ppo) s	sisyler	ıΑ	rder	Vork O	vices v	ne Sen	ihed∃				ju(Clie			
.	(4)		ļ		os	14.	L	i	76 ()80)-9	0	səc	sour	al Re	latur	l lo .	Deb	inuos	siM
Lab Fraction	7	02	03	40	05	90	07	80	60	10	7	12	13	4	15	16	17			
Nuclide	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	TH-232	10.00		
Sample Desc	SOI	MBL	- PO	8	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG			
Counting Date/Time	09/02/05 08:08	09/02/05 08:08	09/02/05 08:09	09/02/05 08:09	09/02/05 08:09	09/02/05 08:10	09/02/05 08:10	09/02/05 08:10	09/02/05 08:10	09/02/05 08:11	09/02/05 08:11	09/02/05 08:11	09/02/05 08:12	09/02/05 08:12	09/02/05 08:12	09/02/05 08:50	09/02/05 08:50			
Hafflife (days)																			2.0	
Detect	A_Spec	A_Spec	A_Spec	A_Spec	A_Spec	A_Spec	A_Spec	A_Spec	A_Spec	A_Spec	A_Spec	A_Spec	A_Spec	A_Spec	A_Spec	A_Spec	A_Spec			
Carrier	-	2	က	ß	g	7	œ	တ	10	-	12	13	41	15	16	17	8			
Count	170.1	170.02	170.05	170.08	170.13 2.87	170.1	170.08	170.05	170.12	170.08	170.05	170	170.05	170	170.08	170.13	170.08			
Counts	170.1 4.09 E+02	170.02 3.15 E+00	5.13 E+01	5.30 E+01	2.87 E+01	170.1 2.55 E+01	3.37 E+01	3.98 E+01	6.50 E+01	170.08 5.47 E+01	170.05 6.38 E+01	170 4.80 E+01	170.05 8.58 E+01	170 2.92 E+01	170.08 3.67 E+01	170.13 6.00 E+01	170.08 8.20 E+01			

19.4

0.00 E+00

20.5

6.00 E-03

05-08094-ThISO-1 (pCi/g) in SO Tracer ID: Th-18a

Printed: 9/2/2005 6:40 AM Page 1 of 1

					:		81,17,18	17,18		
Internal Fraction	Sample Desc	Client ID	Sample Date	Sample Aliquot	Tracer Aliquot (g)	Tracer ACT (dpm)	Radiometric Tracer (pCi)	Radiometric % Rec	SAF 1*	SAF 2*
2	SOT	SOT	08/22/05 00:00	1.0000	0.4646	10.4451				
05	MBL	BLANK	08/22/05 00:00	1.0000	0.4586	10.3102				
03	DUP	VPSCR081705SL01	08/17/05 10:02	0.9922	0.4562	10.2563				
40	8	VPSCR081705SL01	08/17/05 10:02	0.9836	0.4564	10.2608				
02	TRG	VPSCR081705SL02	08/17/05 10:04	0.9944	0.4552	10.2338				
90	TRG	VPSCR081705SL03	08/17/05 10:08	1.0213	0.4565	10.2630				-
20	TRG	VPSCR081705SL04	08/17/05 10:09	1.0194	0.4560	10.2518				
80	TRG	VPSCR081705SL05	08/17/05 10:11	1.0428	0.4536	10.1978				
60	TRG	VPSCR081705SL06	08/17/05 10:18	1.0074	0.4543	10.2136				
10	TRG	VPSCR081705SL07	08/17/05 10:20	1.0049	0.4543	10.2136				
7	TRG	VPSCR081705SL08	08/17/05 10:21	1.0073	0.4517	10.1551				
12	TRG	VPSCR081705SL09	08/17/05 10:23	1.0569	0.4538	10.2023				
13	TRG	VPSCR081705SL10	08/17/05 10:25	0.9981	0.4530	10.1843				
4	TRG	VPSCR081705SL11	08/17/05 10:27	0.9901	0.4520	10.1619				
&)	TRG	VPSCR081705SL12	08/17/05 10:30	0.9961	0.4534	/ 10.1933				
16	TRG	VPSCR081705SL13	08/17/05 10:32	1.0382	0.4536	/ 10.1978				
17	TRG	VPSCR081705SL14	08/17/05 10:44	1.0774	0.4525	10.1731				
)					
		and the state of t								
								_		

Spike and Tracer Worksheet

Printed: 8/23/2005 11:43 AM

S		Γ	Error Estimate	0.000	0.000	0.000	News News														-						
Witness Initials	\setminus	MSD	Error Estimat		0	0													-								
Witne	\d		Added pCi	0.00	0.00	0.00								0 1 10 1 10 1 10 1	r o s												
n Initials	Syncol	SD	Error Estimate	0.000	0.000	0.000		SOT						C)	60			Matrix Spike									
Technician Initials	2	CSD	Known pCi	0.00	0.00	00.00	S											Σ									
			Error Estimate	0.000	0.000	0.000	ter Tape																				
cian	IARD	WS	Added pCi	00.00	0.00	0.00	Balance Printer Tapes						•					!									
Technician	JBARNARD	S	Error Estimate	0.171	0.144	0.171	Balar			or o or o or o or o				(n ((n ((n (- P. 455		70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		T		rr Id Id Id Id Id Id Id Id				
		SOT	Known pCi	4.74	5.33	4.74		Tracer				**************************************						12.1	5 0	: <u>.</u>	(5)	S)	Ţ				
te	5 11:32	MSD	Volume Used (g)	. Us	- vive																						
Date	8/23/2005 11:32	CSD	Volume Used (g)					- - -	_															-		 	
Code	OS OS	MS	Volume Used (g)					Approx Addition	0.4600	0.4600	0.4600	0.4600	0.4600	8	0			_	8	8	_						
Analysis Code	ThISO						1		İ				0	0.4600	0.4600	0.4600	0.4600	0.4600	0.4600	0.4600	0.4600	0.4600	0.4600	0.4600	0.4600		
		SOT	Volume Used (g)	0.1016	0.5025	0.1016		Volume Used (g)	0.4646	0.4586	0.4562	0.4564	0.4552 0	0.4565 0.46	0.4560 0.460	0.4536 0.4600	0.4543 0.4600	0.4543 0.4600	0.4517 0.46	0.4538 0.46	0.4530 0.4600	0.4520 0.4600	0.4534 0.4600	0.4536 0.4600	0.4525 0.4600		
Run	7-	SOT	Approx Volume Addition Used (g)	0.100 0.1016		0.100 0.1016			8/23/2005 0.4646	8/23/2005 0.4586	8/23/2005 0.4562															× × × × × × × × × × × × × × × × × × ×	
Run	7-				0.5025		Tracers	Volume Used (g)			,	0.4564	0.4552	0.4565	0.4560	0.4536	0.4543	0.4543	0.4517	0.4538	0.4530	0.4520	0.4534	0.4536	0.4525		
			Approx Addition	0.100	0.500 0.5025	0.100	Tracers	Solution Volume Date Used (g)	8/23/2005	8/23/2005	8/23/2005	8/23/2005 0.4564	8/23/2005 0.4552	8/23/2005 0.4565	8/23/2005 0.4560	8/23/2005 0.4536	8/23/2005 0.4543	8/23/2005 0.4543	8/23/2005 0.4517	8/23/2005 0.4538	8/23/2005 0.4530	8/23/2005 0.4520	8/23/2005 0.4534	8/23/2005 0.4536	8/23/2005 0.4525		
Internal Work Order Run		LCS & Matrix Spikes	Solution Approx Date Addition	8/23/2005 0.100	8/23/2005 0.500 0.5025	8/23/2005 0.100	Tracers	Activity Solution Volume dpm/g Date Used (g)	22.482 8/23/2005	22.482 8/23/2005	22.482 8/23/2005	22.482 8/23/2005 0.4564	22.482 8/23/2005 0.4552	22.482 8/23/2005 0.4565	22.482 8/23/2005 0.4560	22.482 8/23/2005 0.4536	22.482 8/23/2005 0.4543	22.482 8/23/2005 0.4543	22.482 8/23/2005 0.4517	22.482 8/23/2005 0.4538	22.482 8/23/2005 0.4530	22.482 8/23/2005 0.4520	22.482 8/23/2005 0.4534	22.482 8/23/2005 0.4536	22.482 8/23/2005 0.4525		

Aliquot Worksheet

Printed: 8/23/2005 12:19 PM Page 1 of 1

Technician	JBARNARD	
Lab Deadline	9/9/2005	
Rpt Units	grams	
Analysis Code	Thiso	
Run	1	
Work Order	05-08094	

JBARNARD	olids C	Mater Added H3 Dist Aliquot Net Equiv (ml) Aliq															TO THE STATE OF TH				7 10 10	The Control of the Co					in O i	Francisco de la constanta de l
	Aliquot Data	Net Equiv	1 0000F+00																	00 1.0774E+00						_		
	Aliq	Alianot	1 DOOUE+00		1.0000E+00	9.9220E-01	9.8360E-01	9.9440E-01	1.0213E+00	1.0194E+00	1.0428E+00	1.0074E+00	1.0049E+00	1.0073E+00	1.0569E+00	9.9810E-01	9.9010E-01	9.9610E-01	1.0382E+00	1.0774E+00								
9/9/2005	Dilution Data	Dil Factor Ratio																										
grams		10 oct	217							28																		
Thiso	Muffle Data	Ratio	LOSOLIE																									
1	Sample	ı	- Ape	3	MBL	DUP	20	TRG	TRG	TRG	TRG																	
05-08094	Missouri Dept. of Natural Resources	į	Client ID	S	BLANK	VPSCR081705SL01	VPSCR081705SL01	VPSCR081705SL02	VPSCR081705SL03	VPSCR081705SL04	VPSCR081705SL05	VPSCR081705SL06	VPSCR081705SL07	VPSCR081705SL08	VPSCR081705SL09	VPSCR081705SL10	VPSCR081705SL11	VPSCR081705SL12	VPSCR081705SL13	VPSCR081705SL14				Comments	Comments			
		Fraction	[5	05	03	8	05	90	07	80	60	10	7	12	13	4	5	16	11								

Technician:

Eberline Services - Oak Ridge Prep Logbook Version 2.0 8/1999

Rough Sample Preparation Log Book

Printed: 8/22/2005 9:47 AM Page 1 of 1

Work Order	Lab Deadline	Date Received in Prep	Date Sealed	Date Returned	Technician
05-08094	9/9/2005	8/21/2005	8/22/2005	8/23/2005	KSALLINGS

Eberline	Eberline Missouri Dept. of Natural Resources	Tare (g)	Gross (g)	(6)	Net (g)	(6)	Percent	nt	Gamma	ıma	Special
Fraction	Client ID	Pan Wt	Wet Wt.	Dry Wt.	Wet Wt.	Dry Wt.	Liquid	Solid	Dry Wt.	LEPS Wt.	Info
90	VPSCR081705SL01	14.0000	427.3600	359.7600	413.3600	345.7600	16.35%	83.65%			
90	VPSCR081705SL02	13.8700	408.6400	338.6500	394.7700	324.7800	17.73%	82.27%		-	
90	VPSCR081705SL03	13.7500	484.5800	425.7200	470.8300	411.9700	12.50%	87.50%			
20	VPSCR081705SL04	13.9900	464.1600	401.9900	450.1700	388.0000	13.81%	86.19%			
80	VPSCR081705SL05	13.9400	567.4800	495.5300	553.5400	481.5900	13.00%	87.00%			
60	VPSCR081705SL06	13.9100	501.1000	396.9800	487.1900	383.0700	21.37%	78.63%			
9	VPSCR081705SL07	14.0200	471.6000	374.1500	457.5800	360.1300	21.30%	78.70%			
11	VPSCR081705SL08	14.0000	497.3700	396.4800	483.3700	382,4800	20.87%	79.13%			
12	VPSCR081705SL09	13.9700	501.9700	413.2200	488.0000	399,2500	18.19%	81.81%			
13	VPSCR081705SL10	14.0200	477.0700	345.6500	463.0500	331.6300	28.38%	71.62%			
14	VPSCR081705SL11	13.9500	511.8900	427.7900	497.9400	413.8400	16.89%	83.11%			
15	VPSCR081705SL12	13.8900	464.5200	384.1100	450.6300	370.2200	17.84%	82.16%			
16	VPSCR081705SL13	13.8500	461.6300	353.8000	447.7800	339.9500	24.08%	75.92%			
17	VPSCR081705SL14	13.9500	458.1300	364.2400	444.1800	350,2900	21.14%	78.86%			

	H: Hot, O: Organic Hazard, P: PCB Hazard, R: Rush, T: Other (see comments)
Comments	Special Codes

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:11:15

Spectral File: ND AMS ARCHIVE C:C 0508094A-TH\$01 TH.CNF

01 SAMPLE ID: 0508094A-TH BATCH ID: 1.000E+00 gram 2-SEP-2005 00:00 ALIOUOT: SAMPLE DATE: 001 DETECTOR NUMBER: SPIKE SAMPLE TITLE: 21.47% 2-SEP-2005 08:08 AVERAGE EFFICIENCY: ACO DATE: 101.89% RECOVERY: 10206. ELAPSED LIVE TIME: 110.41 TRACER FWHM (kev): TRACER ID: TH-18A STANDARD ROI TYPE: LAMBDA VALUE: 465. 4.65 CONFIDENCE FACTOR: 10.445 TRACER DPM AT SAMPLE DATE:

2.71 LLD CONSTANT: SOIL

SAMPLE MATRIX: 24-AUG-2005 04:24 EFF CAL DATE: ENERGY CAL DATE: 24-AUG-2005 04:24

60005. BKG ELAPSED TIME: BKG FILENAME: B 001 26AUG05 *******************************

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
TH-227	5850.0	4.64	1.36	97.5	5.760E-02	6.262E-02	1.010E-01
TH-228	5400.0	417.64	1.36	99.9	5.060E+00	9.256E-01	9.852E-02
TH229	4872.0	386.83	0.17	99.5	4.705E+00	6.488E-01	5.629E-02
TH-230	4672.0	471.49	0.51	99.8	5.717E+00	1.028E+00	7.314E-02
TH-232	3997.0	408.81	1.19	100.0	4.948E+00	9.078E-01	9.422E-02
*****	*****	*****	****	*****	*****	****	****

*** Tracer FWHM > 80.0 Kev * * *

6500 -1.23267E-04 3,49319E+03 3.06351E+00 Energy Offset: Slope Quad Energy Energy DKA100: [ALPHA.ALUSR.ARCHIVE.C]C_0508094A-TH\$01_TH.CNF;1 5500 2-SEP-2005 00:00: Energy (keV) 5000 Type: Sample Sample Sample 4500 2-SEP-2005 08:08: 0 02:50:06.00 0 02:50:06.00 Title : 001 Sample Title: SPIKE Live Time : Start Time: Real Time : Spectrum 10 20 30 squnoj

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 239: 225: 239: 253: 267: 281: 295: 309: 323: 337: 351: 421: 435: 449: 443: 449: 453: 505: 506: 507: 507: 707: 707: 708: 709: 709: 709: 709: 709: 709: 709: 709	102 ⁰⁶ 1 0 0 0 0 0 2 2 2 5 1 1 1 0 0 0 0 0 1 0 0 3 7 6 7 1 1 7 8 2 4 3 1 1 0 0 0 2 0 8 3 9 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	10206 0 0 0 1 0 0 2 1 2 4 7 16 1 0 0 0 0 0 1 0 0 2 5 6 8 1 1 0 1 6 5 8 6 1 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000010159010100000100328411127512120001134810000000000000000000000000000000	010000010077200000010101010620348471110000100538000000000000000000000000000	10000001141120000000000100462901310242130010039820000100000000000000000000000000000000	00000013134500000100001112082113432110000223440000100000000000000000	00000003149100110011223702302211500000280210000010000000011100000	0000000101302100000000143011057435111100145940000000000000000000000000000	000000111258900000000100277402584221200001441100000300000000000000000000	000000021508000000001106204602333200102228200016000000000011000000	0000001113509000000011224370209241100110141280000330000000000000000000000000000000	000200111179500000000101098911873211100121241301003200000000000000000000	00000040103400011010001030692179225300001067820000420000000000000000000000000000000	00000010543100000010011376001782324000011432100003001000001000000000000

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:11:11.06

Acquisition Start: 2-SEP-2005 08:08:32.01 Detector ID: 1

Real Time: 0 02:50:06.00 Live Time: 0 02:50:06.00

Sample Id: 01 Batch Id: 0508094A-TH

Sample Type: TH

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	3983.93 4660.49 4899.10 5388.78 5816.34	410 472 387 419 6	0 01 0	31.01 10.41 47.84	161.24 387.06 467.73 634.99 783.00	308 409 553	102 128 104	4.02E-02 4.62E-02 3.79E-02 4.11E-02 5.88E-04	4.6 5.1 4.9	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:11:13.62

Acquisition Start: 26-AUG-2005 13:00:10.01 Real Time: 0 16:40:05.00

Live Time: 0 16:40:05.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0	3951.45 4575.61 4913.18 5300.04 5876.57	7 3 1 8 8	01- 0 02.	43.99 0.00 35.89	150.50 358.50 472.50 604.50 804.00	308 409 553	102 128 104	1.17E-04 5.00E-05 1.67E-051 1.33E-04 1.33E-04	57.7 00.0 35.4	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:11:13.98

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	3983.93* 4660.49* 4899.10* 5388.78* 5816.34*	409 471 387 418 5	0 01 0	31.01 10.41 47.84	161.24 387.06 467.73 634.99 783.00	308 409 553	102 128 104	4.01E-02 4.62E-02 3.79E-02 4.09E-02 4.55E-04	4.6 5.1 4.9	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:11:14

Configuration : MCAO: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : SPIKE

Sample date : 2-SEP-2005 00:00:00 Acquisition date : 2-SEP-2005 08:08:32

Sample quantity : 1.0000 gram Sample ID : 01

Sample geometry : Sample type

Detector name : 001 Detector geometry:

Elapsed real time: 0 02:50:06.00 0.0% Elapsed live time: 0 02:50:06.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV 3.00 % Systematic Error : Errors propagated: Yes

Efficiencies at : Peak Energy Efficiency type : Average value

Abundance limit : 75.00

Post-NID Peak Search Report

It	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0 0	3983.93* 4660.49* 4899.10* 5388.78* 5816.34*	471 3871 418	29.21 31.01 10.41 47.84 4.50	161.24 387.06 467.73 634.99 783.00	409 553	102 128 104	9.9 9.2 10.2 9.8		TH-232 TH-230 TH229 TH-228 TH-227	5.04 5.83 4.79 5.16 5.869E-02

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:11:32

Spectral File: ND_AMS_ARCHIVE_R:R_0508094A-TH\$02_TH.CNF

02 SAMPLE ID: 0508094A-TH BATCH ID: 1.000E+00 gram ALIOUOT: SAMPLE DATE: 2-SEP-2005 00:00 002 BLANK DETECTOR NUMBER: SAMPLE TITLE: 20.34% AVERAGE EFFICIENCY: 2-SEP-2005 08:08 ACO DATE: 51.90% RECOVERY: 10201. ELAPSED LIVE TIME: 35.37 TRACER FWHM (kev): TH-18A TRACER ID: STANDARD ROI TYPE: LAMBDA VALUE: 459. 4.65 10.310 CONFIDENCE FACTOR: TRACER DPM AT SAMPLE DATE: 2.71 LLD CONSTANT: SOIL SAMPLE MATRIX: 24-AUG-2005 04:24 EFF CAL DATE: ENERGY CAL DATE: 24-AUG-2005 04:24 60002. BKG ELAPSED TIME:

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
TH-227	5850.0	-0.36	1.36	97.5	-9.270E-03	5.715E-02	2.094E-01
TH-228	5400.0	-0.85	0.85	99.9	-2.136E-02	1.952E-02	1.757E-01
TH229	4872.0	184.15	0.85	99.5	4.644E+00	8.114E-01	1.765E-01
TH-230	4672.0	8.32	0.68	99.8	2.092E-01	1.568E-01	1.646E-01
TH-232	3997.0	3.15	0.85	100.0	7.906E-02	1.033E-01	1.756E-01

Analyst

Reviewer

<u>9-2</u> Date

Date

-1.36165E-04 3,49865E+03 3,05737E+00 6000 Energy Offset: Energy Slope Energy Quad DKA100: [ALPHA.ALUSR.ARCHIVE.R]R_0508094A-TH*02_TH.CNF;1 5500 2-SEP-2005 00:00: Energy (keV) 5000 Sample ID : Sample Type: Sample Time: 4500 2-SEP-2005 08:08: Real Time : 0 02:50:01.00 Live Time : 0 02:50:01.00 4000 002 BLANK Sample Title: Start Time: Spectrum Title 70 ഥ 0 squnoj

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127:	10201 0 0 1 0 0 0 0	10201 0 0 0 0 0 0 1 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 1 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0
141: 155: 169: 183: 197: 211: 225: 239: 253: 267: 281: 295:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 1 0 0 0	0 0 1 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0
309: 323: 337: 351: 365: 379: 393: 407: 421: 435: 449:	0 0 1 0 0 0 0 0	0 0 0 0 1 0 0 1 2	0 0 0 0 0 0 0 0	0 0 0 0 0 1 0 2 0 6 2	0 0 0 0 0 0 0 0	0 0 0 0 1 0 1 1 5	0 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 2 7 2	1 0 0 0 0 0 0 0	0 0 0 0 0 2 0 0 3 7	0 0 0 0 0 0 0 0 0 0 3 4 2	0 0 0 0 1 0 1 1 2 8 2	0 0 0 0 0 0 0 0 2 2	0 0 0 0 0 0 0 0 0 2 5 3 5
463: 477: 491: 505: 519: 533: 547: 561: 575: 589: 603: 617:	7 2 1 1 2 1 0 0 0 0	1 2 0 0 0 0 0 0 0	1 2 0 1 0 0 0 0	1 0 1 0 0 0 0	5 2 1 0 0 0 0 0	0 1 1 2 0 0 0 0 0	0 0 1 1 0 0 0 0	1 3 2 1 0 0 0 0 0	0 0 1 1 1 0 0 0 0	4 3 0 0 0 0 0 0 0	0 2 1 1 0 0 0 0 0	1 1 0 0 0 0 0 0	3 1 0 0 0 0 0 0	0 0 1 0 0 0 0 0
631: 645: 659: 673: 687: 701: 715: 729: 743: 757: 771: 785:	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 1 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
799: 813: 827: 841: 855: 869: 883: 897: 911: 925: 939: 953:	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
967: 981: 995: 1009: 1023:	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 1	

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:11:26.20

Acquisition Start: 2-SEP-2005 08:08:47.01 Detector ID: 2

Real Time: 0 02:50:01.00 Live Time: 0 02:50:01.00

Sample Id: 02 Batch Id: 0508094A-TH

Sample Type: TH

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	3972.28 4627.32 4904.45 5299.96 5814.77	4 9 185 0 1	0 0 0	3.06 35.37 0.00	156.00 375.44 469.63 605.50 785.00	307 409 554	103 129 104	3.92E-04 8.82E-04 1.81E-02 0.00E+00 9.80E-051	33.3 7.4 0.0	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:11:29.70

Acquisition Start: 26-AUG-2005 13:00:13.01 Real Time: 0 16:40:02.00

Live Time: 0 16:40:02.00

Pk	It	Energy	Area	Bkgnd FWHM	ß Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	3949.66	5	0155.93	148.50	99	100	8.33E-05	44.7	
2	0	4575.73	4	0238.47	358.00	307	103	6.67E-05	50.0	
3	0	4914.32	5	0345.48	473.00	409	129	8.33E-05	44.7	
4	0	5299.96	5	0241.53	605.50	554	104	8.33E-05	44.7	
5	0	5875.85	8	0 4.49	806.50	745	124	1.33E-04	35.4	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:11:30.00

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	3972.28* 4627.32* 4904.45* 5299.96* 5814.77*	3 8 184 -1 0	0 :	3.06 35.37 0.00	156.00 375.44 469.63 605.50 785.00	307 409 554	103 129 104-	3.09E-04 8.16E-04 1.81E-02 -8.33E-05	36.3 7.4 44.7	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:11:30

Configuration : MCA0:[AMSCOUNT]00009067\$1

: ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 : BLANK Analyses by

Sample title

Sample date : 2-SEP-2005 00:00:00 Acquisition date : 2-SEP-2005 08:08:47

Sample quantity : 1.0000 gram Sample ID : 02

Sample geometry : TH Sample type

Detector name : 002 Detector geometry:

0.0% Elapsed real time: 0 02:50:01.00 Elapsed live time: 0 02:50:01.00

Half life ratio : 8.00 Energy tolerance : 100.00 keV 3.00 % Systematic Error : Errors propagated: Yes Efficiencies at : Peak Energy

Efficiency type : Average value Abundance limit : 75.00

Post-NID Peak Search Report

It	Energy	Area FWHM Channel	Left Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0 0 0	3972.28* 4627.32* 4904.45* 5299.96* 5814.77*	3216.69 156.00 8 3.06 375.44 184 35.37 469.63 -1 0.00 605.50 0 3.06 785.00	409 129 14.8		TH-232 TH-230 TH229 TH-228 TH-227	4.103E-02 0.109 2.41 -1.108E-02 -4.811E-03

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:11:41

*

BATCH ID:	0508094A-TH	*	SAMPLE ID:		03
SAMPLE DATE:	17-AUG-2005 00:00	*	ALIQUOT:	9.922E-01	gram
SAMPLE TITLE:	VPSCR081705SL01	*	DETECTOR NUME	BER:	003
ACO DATE:	2-SEP-2005 08:09	*	AVERAGE EFFIC	CIENCY:	20.63%
ELAPSED LIVE TI	ME: 10203.	*	RECOVERY:		93.73%
TRACER ID:	TH-18A	*	TRACER FWHM ((kev):	163.55
LAMBDA VALUE:	456.	*	ROI TYPE:	S	<u> FANDARD</u>
TRACER DPM AT S	SAMPLE DATE: 10.256	*	CONFIDENCE FA	CTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:		2.71
	E: 24-AUG-2005 04:24	*	EFF CAL DATE:	24-AUG-2005	5 04:24
	די טעט טעזוניטב	*	סעם עואספעט יו	TMT.	60005

NUCLIDE ACTIVITY SUMMARY

NUCLIDE E		NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
TH-227 5	850.0	5.15	0.85	97.5	7.302E-02	7.126E-02	9.908E-02
TH-228 5	400.0	34.98	1.02	99.9	4.911E-01	1.862E-01	1.023E-01
TH229 4	872.0	335.64	1.36	99.5	4.656E+00	6.691E-01	1.128E-01
TH-230 4	672.0 1	101.30	1.70	99.8	1.401E+00	3.592E-01	1.213E-01
TH-232 3	997.0	51.32	0.68 1	.00.0	7.085E-01	2.292E-01	9.036E-02
							واطواطه ملوطه ملوطه بالمامل بالمال بالمال المال المال المال

*** Tracer FWHM > 80.0 Kev ***

Analy

Réviewer

<u>9-2-05</u>

-1.37605E-04 3,49798E+03 3,06679E+00 0009 Energy Offset: Slope Quad Energy Energy DKA100; [ALPHA.ALUSR.ARCHIVE.S]S_0508094A-TH\$03_TH.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 Sample Type: Time: Sample Sample 4500 2-SEP-2005 08:09: 0 02:50:03.00 0 02:50:03.00 VPSCR081705SL01 4000 003 Sample Title: Time : Time : Spectrum Start Title Live Real മ 0 10 squnoj

Channel														
1: 15:	1020 3 0	10203 0	0	0 0	0	0 1	0 0	0	0	0	0	0	0	0
29: 43:	0 0	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
57: 71:	0	1 0	0	0	0	0	0 0	0	0 0	1 0	0 0	0 0	0 0	0 0
85:	0	0	0	0	0	0	Ō	Ō	Ō	0	0	0	0	0
99: 113:	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	ò	0
127: 141:	0 0	0 0	0 1	0	0 0	0 0	0 0	0 0	0 2	0 3	0 1	0 1	1 2	0 0
155:	0	0	0	0	4	Ō	3	1	1	1	3 1	3	3 0	1 0
169: 183:	1 0	1 0	2 0	1 0	7 0	2 0	2 0	0 0	1 0	1 0	0	0	0	0
197: 211:	0 0	0 0	0 0	0	0 0	0 1	1 0	0 0	0 0	0	0 0	0 0	1 0	0 0
225:	0	0	0	0	0	1	0	0	0	0	0 0	0	0 0	0 0
239: 253:	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	Ō	0	0
267: 281:	0 0	0 0	0 1	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
295:	0	1	0	0	0	0	0	0 1	0	0	0 0	0 0	0 0	0 0
309: 323:	0 0	0 0	0 0	0 0	1	0	0	0	1	0	0	0	0	0
337: 351:	0 0	0 1	0 1	0 0	0 0	0 1	0 0	0 2	0 0	0 0	0 0	0 1	0 0	0 0
365: 379:	0	0 3	0	0	2 1	1 2	1 1	2	1 1	1 4	1 2	0 0	2 3	1 5
393:	2 5	5	2	7	3	1	4	7	8	3	3	1	1	0
407: 421:	2 1	· 1	0 0	0 2	0 0	1 0	1 0	2 0	0 0	0 3	0 1	0 1	0 2	0
435: 449:	1	3	0 5	2 6	2 10	0 4	3 11	6 9	2 10	3 6	9 8	3 5	3 8	5 7
463:	8	8	6	7	5	4	5	4	2	4	7	2	6	3 2
477: 491:	4 1	5 4	6 1	3 2	2 7	5 1	3 2	2 0	2 1	4 2	3 2	0 0	3 2	2
505: 519:	2 1	1 0	1 3	1 0	1 1	2	1 2	1 0	2 0	0 2	2 1	1 1	0 0	1 2
533:	1	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0
547: 561:	0 0	0 0	0 0	0 0	Ō	0 0	0	0	0	0	0	0	0	0
575: 589:	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	1 0	0 0	0 0	0 0	0 0	0 0
603:	0	0	Ö	0	0	0	1	0	0	0 0	1 0	0	0 0	0
617: 631:	0 0	0 0	0 1	0 1	0 0	0 0	1	0	1	Ö	3	0	2	4
645: 659:	1 0	4 0	1 0	0 0	4 0	3 0	0 0	3 0	1 0	0 0	0 0	1 0	1 0	0 0
673: 687:	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
701:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
715: 729:	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0	0	0	0
743: 757:	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	1 0	0 0	0 0
771:	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0
785: 799:	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0
813: 827:	0 0	0 0	0 0	0 0	1 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
841: 855:	0	0	0	0	0	0 0	0 0	1 0	0 0	1 0	0 0	0 0	0 0	0
869:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
883: 897:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
911: 925:	0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
939:	0	0	0	0	0	0	0	0	0	1	0	0	0	0 0
953: 967:	0 0	0 0	0 0	1 0	0 0	0 0	0 0	0	0	Ó	0	0	0	0
981: 995:	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0
1009:	0	0	Ö	0	ŏ	Ö	Ö	Ö	Ö	0	Ō	0	0	0
1023:	0	0											77.72.77	

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:11:37.66

Detector ID: 3 Acquisition Start: 2-SEP-2005 08:09:05.01

Live Time: 0 02:50:03.00 Real Time: 0 02:50:03.00

Batch Id: 0508094A-TH Sample Id: 03

Sample Type: TH

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	3991.65	52	0	45.46	162.15	99	100	5.10E-03	13.9	
2	0	4664.10	103	0	31.23	386.96	306	103	1.01E-02	9.9	
3	0	4903.18	337	01	63.55	468.03	408	128	3.30E-02	5.4	
4	0	5398.50	36	0	36.26	637.97	552	105	3.53E-03	16.7	
5	0	5884.21	6	0	0.00	807.33	743	124	5.88E-04	40.8	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:11:39.45

Acquisition Start: 26-AUG-2005 13:00:16.01

Live Time: 0 16:40:05.00 Real Time: 0 16:40:05.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	3950.36	4	0	88.94	148.50	99	100	6.67E-05	50.0	
2	0	4575.28	10	0	0.00	357.00	306	103	1.67E-04	31.6	
3	0	4913.38	8	0	0.00	471.50	408	128	1.33E-04	35.4	
4	0	5300.12	6	01	L31.87	604.00	552	105	1.00E-04	40.8	
5	0	5876.15	5	0	0.00	804.50	743	124	8.33E-05	44.7	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:11:39.75

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	3991.65*	51	0	45.46	162.15	99	100	5.03E-03	14.1	
2	0	4664.10*	101	0	31.23	386.96	306	103	9.93E-03	10.0	
3	0	4903.18*	336	01	63.55	468.03	408	128	3.29E-02	5.5	
4	0	5398.50*	35	0	36.26	637.97	552	105	3.43E-03	17.2	
5	0	5884.21*	5	0	0.00	807.33	743	124	5.05E-04	48.1	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:11:40

Configuration : MCA0: [AMSCOUNT] 00009067\$1 : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Sample title : VPSCR081705SL01

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:09:05 Sample date

Sample quantity : 0.99220 gram : 03 Sample ID

Sample geometry Sample type : TH

Detector name : 003 Detector geometry:

Elapsed real time: 0 02:50:03.00 0.0% Elapsed live time: 0 02:50:03.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV 3.00 % Systematic Error : Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

Post-NID Peak Search Report

Ιt	Energy	Area FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0 0 0	3991.65* 4664.10* 4903.18* 5398.50* 5884.21*	51 45.46 101 31.23 336163.55 35 36.26 5 0.00	386.96 468.03	306 408 552	100 28.1 103 20.1 128 10.9 105 34.4 124 96.3		TH-232 TH-230 TH229 TH-228 TH-227	0.664 1.31 4.36 0.460 6.844E-02

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:11:50

*

BATCH ID:	0508094A-TH	*	SAMPLE ID:		04
SAMPLE DATE:	17-AUG-2005 00:00	*	ALIQUOT:	9.836E-01	gram
SAMPLE TITLE:	VPSCR081705SL01	*	DETECTOR NUMB	ER:	005
ACO DATE:	2-SEP-2005 08:09	*	AVERAGE EFFIC	IENCY:	21.20%
ELAPSED LIVE TIM	E: 10205.	*	RECOVERY:		76.09%
TRACER ID:	TH-18A	*	TRACER FWHM (kev):	87.65
LAMBDA VALUE:	456.	*	ROI TYPE:	ST	'ANDARD
TRACER DPM AT SA	MPLE DATE: 10.261	*	CONFIDENCE FA	CTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:		2.71
	24-AUG-2005 04:24	*	EFF CAL DATE:	24-AUG-2005	04:24
			DIEG DE ADODD M	TAGE	c0002

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
TH-227	5850.0	5.47	1.53	97.5	9.377E-02	9.371E-02	1.449E-01
TH-228	5400.0	34.49	0.51	99.9	5.855E-01	2.236E-01	1.007E-01
TH229	4872.0	280.15	0.85	99.5	4.699E+00	7.126E-01	1.174E-01
TH-230	4672.0	83.15	0.85	99.8	1.390E+00	3.846E-01	1.170E-01
TH-232	3997.0	53.00	0.00	100.0	8.847E-01	2.843E-01	4.524E-02

*** Tracer FWHM > 80.0 Kev ***

Analyst

Date

Reviewer

Date

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 183: 295: 207: 281: 295: 295: 309: 323: 365: 379: 365: 379: 449: 449: 449: 449: 47: 491: 505: 519: 533: 647: 647: 701: 715: 729: 743: 771: 785: 799: 715: 799: 715: 715: 729: 743: 757: 771: 785: 789: 799:	05 00 00 00 00 00 00 00 00 00 00 00 00 0	1020 00000010021100000000100000100164113200000010000011110000000000000000000	0000000041100000002010020260026221420000001010000000000	00200100001010000000000111310058611000000112000000000000000000000000000	000000010111000100010000222000333215100000010000000000	000001010012000000000010010132036140101000001011000000000000010000000	001000000100001000001001020402285320200000004200000000000000000000000000	000100100023000000000000002221137312110000001020000101000000300000010000	0000000101000000110000002130011720000000010000010000000000	010000000000000000000000000000000000000	00010000120100000000000011021028430100000100000000000000000000000000000	0000000100100000000101001320250443120000000000000000000000000000000000	0000010101400000000000000120127230010000001010000000000	00000001300000010000122201037421120000000000000000000000000000000000

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:11:46.06

Acquisition Start: 2-SEP-2005 08:09:24.01 Detector ID: 5

Real Time: 0 02:50:05.00 Live Time: 0 02:50:05.00

Sample Id: 04 Batch Id: 0508094A-TH

Sample Type: TH

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0	3965.23 4643.55 4896.89 5398.85 5828.21	53 84 281 35 7	0 0	23.79 87.65 63.73	149.91 382.68 470.98 648.26 802.43	307 411 560	105 132 107	5.19E-03 8.23E-03 2.75E-02 3.43E-03 6.86E-04	10.9 6.0 16.9	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:11:48.56

Acquisition Start: 26-AUG-2005 13:00:19.01 Real Time: 0 16:40:03.00

Live Time: 0 16:40:03.00

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	3950.77 4575.24 4912.64 5299.72 5875.34	0 5 5 3 9	01 01 0	85.32 67.38 2.99	145.00 359.00 476.50 613.00 819.50	307 411 560	105 132 107	0.00E+00 8.33E-05 8.33E-05 5.00E-05 1.50E-04	44.7 44.7 57.7	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:11:48.84

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	3965.23*	53	0	80.65	149.91	94	103	5.19E-03	13.7	
2	0	4643.55*	83	0	23.79	382.68	307	105	8.15E-03	11.0	
3	0	4896.89*	280	0	87.65	470.98			2.75E-02		
4	0	5398.85*	34	0	63.73	648.26	560	107	3.38E-03	17.2	
5	0	5828.21*	5	0	2.99	802.43	756	128	5.36E-04	49.3	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:11:49

Configuration : MCA0: [AMSCOUNT] 00009067\$1
Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3
Sample title : VPSCR081705SL01

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:09:24 Sample date

Sample quantity : 0.98360 gram Sample ID : 04

: TH Sample geometry Sample type

: 005 Detector geometry: Detector name

Elapsed real time: 0 02:50:05.00 0.0% Elapsed live time: 0 02:50:05.00

Half life ratio : 8.00 Energy tolerance : 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes Efficiencies at : Peak Energy Efficiency type : Average value

Abundance limit : 75.00

Post-NID Peak Search Report

Ιt	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0 0	3965.23* 4643.55* 4896.89* 5398.85* 5828.21*	83 280 34		149.91 382.68 470.98 648.26 802.43	307 411 560	105 132 107	27.5 22.1 12.0 34.3 98.5		TH-232 TH-230 TH229 TH-228 TH-227	0.673 1.06 3.58 0.445 7.135E-02

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:11:59

*

BATCH ID:	0508094A-TH	*	SAMPLE ID:		05
SAMPLE DATE:	17-AUG-2005 00:00	*	ALIQUOT:	9.944E-01	gram
SAMPLE TITLE:	VPSCR081705SL02	*	DETECTOR NUMBE	R:	006
ACO DATE:	2-SEP-2005 08:09	*	AVERAGE EFFICI	ENCY:	20.92%
ELAPSED LIVE TIME		*	RECOVERY:		87.84%
TRACER ID:	TH-18A	*	TRACER FWHM (k	ev):	75.49
LAMBDA VALUE:	455.	*	ROI TYPE:	ST.	ANDARD
TRACER DPM AT SAM	MPLE DATE: 10.234	*	CONFIDENCE FAC	TOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:		2.71
	24-AUG-2005 04:24	*	EFF CAL DATE:	24-AUG-2005	04:24
BKG FILENAME:	B_006_26AUG05	*	BKG ELAPSED TI	ME:	60006.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
TH-227	5850.0	5.81	1.19	97.5	8.647E-02	8.111E-02	1.157E-01
TH-228	5400.0	36.81	1.19	99.9	5.425E-01	2.022E-01	1.129E-01
TH229	4872.0	318.32	0.68	99.5	4.636E+00	6.761E-01	9.533E-02
TH-230	4672.0	166.15	0.85	99.8	2.412E+00	5.411E-01	1.016E-01
TH-232	3997.0	28.66	0.34	100.0	4.154E-01	1.700E-01	7.859E-02

Analyst/

_ Mu

9-2-0

Date

-1.25475E-04 3.56747E+03 2.88433E+00 6000 Energy Offset: Slope Quad Energy Energy DKA100: [ALPHA.ALUSR.ARCHIVE.S]S_0508094A-TH\$05_TH.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 05 Time: Type: Sample Sample Sample 4500 Title: VPSCR081705SL02 2-SEP-2005 08:09: 0 02:50:08.00 0 02:50:08.00 4000 Start Time: Live Time : Time : Spectrum Sample Title Real ம 0 10 squnoj

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 183: 197: 211: 225: 239: 267: 281: 295: 309: 323: 337: 365: 379: 365: 379: 365: 379: 365: 379: 365: 379: 365: 379: 365: 379: 365: 379: 365: 379: 365: 379: 365: 379: 365: 379: 365: 379: 365: 379: 365: 379: 365: 379: 393: 407: 421: 435: 449: 4477: 491: 505: 519: 533: 547: 561: 575: 589: 603: 617: 715: 777: 775: 775: 775: 775: 775: 7	10208 0000000110000000236112373214100000000000000000000000000000000000	10208 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000010000000000000001001002280014332120000010020001000000000000000000	00000000000001100000001600036142010000000000000000000000000000000000	000000000000000100001100101290143521012000001012000000100000000000000000	0000000010100001000000013301074543000000103000000000000000000000000000	000000001100000000001111791213512151000000100010000000000000000000	0000000010100000000000003380046333210000001111000010000000000000000000	100000000000000000000000000000000000000	0000000010000000001100032401292420500000101000000000000000000000000000	0000000010000000000000142403486300000001020000010000000000000000000000	0000000110000000100000228203263221400000010100000000000000000000000000	000000000000000000000000000000000000000

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:11:54.66

Acquisition Start: 2-SEP-2005 08:09:41.01 Detector ID: 6

Real Time: 0 02:50:08.00 Live Time: 0 02:50:08.00 Batch Id: 0508094A-TH

Sample Id: 05

Sample Type: TH

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	3995.53 4660.27 4903.24 5392.28 5833.71	29 167 319 38 7	0 0 0	47.01 75.49 18.75	149.38 385.34 472.84 651.11 814.57	301 409 562	109 136 111	2.84E-03 1.64E-02 3.13E-02 3.72E-03 6.86E-04	7.7 5.6 16.2	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:11:57.06

Acquisition Start: 26-AUG-2005 13:00:21.01 Real Time: 0 16:40:06.00

Live Time: 0 16:40:06.00

Pk It	Energy	Area	Bkgnd FW	HM Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	3950.29 4575.59 4913.36 5299.33 5876.36	2 5 4 7 7	0271. 0349. 0219.	31 133.50 13 355.00 00 476.50 21 617.00 88 830.50	301 409 562	109 136 111	3.33E-05 8.33E-05 6.67E-05 1.17E-04 1.17E-04	44.7 50.0 37.8	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:11:57.35

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	3995.53* 4660.27* 4903.24* 5392.28* 5833.71*	29 166 318 37 6	0 0 0	47.01 75.49 18.75	149.38 385.34 472.84 651.11 814.57	301 409 562	109 136 111	2.81E-03 1.63E-02 3.12E-02 3.61E-03 5.69E-04	7.8 5.6 16.8	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:11:58

Configuration : MCA0: [AMSCOUNT] 00009067\$1
Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3
Sample title : VPSCR081705SL02

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:09:41 Sample date

Sample quantity : 0.99440 gram : 05 Sample ID

: TH Sample geometry Sample type

Detector name : 006 Detector geometry:

0.0% Elapsed real time: 0 02:50:08.00 Elapsed live time: 0 02:50:08.00

Half life ratio : 8.00 Energy tolerance : 100.00 keV Errors propagated: Yes Systematic Error : 3.00 % Efficiencies at : Peak Energy

Efficiency type : Average value

Abundance limit : 75.00

It	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0 0	3995.53* 4660.27* 4903.24* 5392.28* 5833.71*	166 318 37	47.01 75.49 18.75	149.38 385.34 472.84 651.11 814.57	301 409 562	109 136 111	37.6 15.6 11.2 33.6 92.4		TH-232 TH-230 TH229 TH-228 TH-227	0.365 2.12 4.07 0.477 7.596E-02

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:12:13

Spectral File: ND AMS ARCHIVE S:S 0508094A-TH\$06 TH.CNF ******************************

BATCH ID:	0508094A-TH	*	SAMPLE ID:	06
SAMPLE DATE:	17-AUG-2005 00:00	*	ALIQUOT: 1.021E+00	gram
SAMPLE TITLE:	VPSCR081705SL03	*	DETECTOR NUMBER:	007
ACQ DATE:	2-SEP-2005 08:10	*	AVERAGE EFFICIENCY:	20.59%
ELAPSED LIVE TIM	ME: 10206.	*	RECOVERY:	85.23%
TRACER ID:	TH-18A	*	TRACER FWHM (kev):	113.14
LAMBDA VALUE:	456.	*	ROI III .	randard
TRACER DPM AT SA	AMPLE DATE: 10.263	*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
ENERGY CAL DATE	: 24-AUG-2005 04:24	*	EFF CAL DATE: 24-AUG-2009	
DIC DIL DILAM	D AAT ACNIICAE	4	DEC ELYDOED TIME.	60003.

B 007 26AUG05 BKG ELAPSED TIME: BKG FILENAME:

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram					
TH-227	5850.0	2.32	0.68	97.5	3.521E-02	5.389E-02	9.921E-02					
TH-228	5400.0	18.98	1.02	99.9	2.852E-01	1.428E-01	1.095E-01					
TH229	4872.0	304.83	0.17	99.5	4.526E+00	6.685E-01	6.872E-02					
TH-230	4672.0	98.83	0.17	99.8	1.463E+00	3.793E-01	6.851E-02					
TH-232	3997.0	25.49	0.51	100.0	3.767E-01	1.630E-01	8.913E-02					
*****	************************											

*** *** Tracer FWHM > 80.0 Kev

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:12:02.69

Acquisition Start: 2-SEP-2005 08:10:03.01 Detector ID: 7

Real Time: 0 02:50:06.00 Live Time: 0 02:50:06.00

Sample Id: 06 0508094A-TH Batch Id:

Sample Type: TH

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0	4008.56 4644.76 4897.67 5384.17 5747.14	26 99 305 20 3	0 01 0	34.03 .13.14 3.59	133.38 373.95 470.83 659.25 801.67	290 405 568	116 145 118	2.55E-03 9.70E-03 2.99E-02 1.96E-03 2.94E-04	10.1 5.7 22.4	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:12:11.95

Acquisition Start: 26-AUG-2005 13:00:24.01 Real Time: 0 16:40:03.00

Live Time: 0 16:40:03.00

Pk I	t	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
1	0	3950.10	3	0	2.70	111.50	55	114	5.00E-05 57.7	
2	0	4575.38	1	0	2.70	347.50	290	116	1.67E-05100.0	
3	0	4913.73	1	0	2.70	477.00	405	145	1.67E-05100.0	
4	0	5300.12	6	02	15.65	626.50			1.00E-04 40.8	
5	0	5875.70	4	0	0.00	852.50	783	140	6.67E-05 50.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:12:12.23

Pk	It	Energy	Area	Bkgnd FWH	M Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	4008.56* 4644.76* 4897.67* 5384.17* 5747.14*	25 99 305 19 2	0 34.0 0113.1 0 3.5	2 133.38 3 373.95 4 470.83 9 659.25 4 801.67	290 405 568	116 145 118	2.50E-03 9.68E-03 2.99E-02 1.86E-03 2.27E-04	10.1 5.7 23.7	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:12:13

Configuration : MCA0: [AMSCOUNT] 00009067\$1 : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 : VPSCR081705SL03

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:10:03 Sample date

Sample quantity : 1.0213 gram : 06 Sample ID

Sample type Sample geometry : TH

Detector name : 007 Detector geometry:

Elapsed real time: 0 02:50:06.00 0.0% Elapsed live time: 0 02:50:06.00

Half life ratio : 8.00 Energy tolerance : 100.00 keV Errors propagated: Yes Systematic Error : 3.00 % Efficiency type : Average value Efficiencies at : Peak Energy

Abundance limit : 75.00

It	Energy	Area F	MHW	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0	4008.56* 4644.76*	25 34 99 34		133.38 373.95			40.1		TH-232 TH-230	0.321 1.25
Ö	4897.67*			470.83			11.5		TH229	3.86
0	5384.17*	19 3	.59	659.25			47.3		TH-228	0.243
0	5747.14*	2 97	.04	801.67	783	1401	152.2		TH-227	3.001E-02

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:12:27

BATCH ID:	0508094A-TH	*	SAMPLE ID:	07
	-2005 00:00	*	ALIQUOT: 1.019E+00	gram
	R081705SL04	*	DETECTOR NUMBER:	800
	-2005 08:10	*	AVERAGE EFFICIENCY:	18.47%
ELAPSED LIVE TIME:	10205.	*	RECOVERY:	66.92%
TRACER ID:	TH-18A	*	TRACER FWHM (kev):	132.24
LAMBDA VALUE:	456.	*	ROI TYPE:	TANDARD
TRACER DPM AT SAMPLE DA	TE: 10.252	*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
ENERGY CAL DATE: 24-AUG	-2005 04:24	*	EFF CAL DATE: 24-AUG-200	5 04:24
	008_26AUG05	*	BKG ELAPSED TIME:	60001.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
TH-227	5850.0	5.00	0.00	97.5	1.079E-01	9.847E-02	5.842E-02
TH-228	5400.0	34.49	0.51	99.9	7.372E-01	2.858E-01	1.268E-01
TH229	4872.0	214.49	0.51	99.5	4.530E+00	7.500E-01	1.274E-01
TH-230	4672.0	66.66	0.34	99.8	1.404E+00	4.272E-01	1.142E-01
TH-232	3997.0	33.66	0.34	100.0	7.075E-01	2.763E-01	1.140E-01
							and the second s

*** Tracer FWHM > 80.0 Kev ***

Analyst

/\d

Reviewer

9-2-05

Date

nate

-7.92413E-05 3,76453E+03 2.56154E+00 0009 Energy Offset: Energy Slope : Quad Energy DKA100: [ALPHA.ALUSR.ARCHIVE.S]S_0508094A-TH\$07_TH.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 프 Time: Sample Type: Sample ID Sample 4500 2-SEP-2005 08:10: 0 02:50:05.00 0 02:50:05.00 VPSCR081705SL04 800 4000 Title: Live Time : Start Time: Time : Spectrum Sample Title Real N 0 ø etnuol 4 ω

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 183: 211: 225: 239: 253: 267: 281: 295: 309: 323: 337: 421: 435: 449: 435: 505: 519: 519: 519: 519: 519: 519: 519: 51	10205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 2 0 0 0 2 5 0 2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	00000110000000000000010020201054111000000001020000000000	00000142000001000000010305002120200000100000020000000000	00000021000000000000011301214111210100000230000000000	00000012000000000000001241105422110000000000	000003000000000000000000000000000000000	00000020001000000000000120114322001000000111010000000000	00000000001000100000100220043520100000000000000000000000000000000000	0000002001000001000010111212135222101000000110000000000	00000120000000000100000100002513311100000030000000000	0000011000000000000000012003274050010000001020000000000000000000000000	000000000000000000000000000000000000000
715: 729: 743: 757: 771: 785: 799: 813: 827: 841: 855: 869: 883: 897: 911: 925: 939:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0		000000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0
967: 981: 995: 1009: 1023:	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:12:17.44

Detector ID: 8 Acquisition Start: 2-SEP-2005 08:10:21.01

Live Time: 0 02:50:05.00 Real Time: 0 02:50:05.00

Batch Id: 0508094A-TH Sample Id: 07

Sample Type: TH

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
		4000.57 4652.41	34 67		11.91 79.36	92.41 350.42	260	120	3.33E-03 6.57E-03	12.2	
3	0	4888.26	215	013	32.24	444.81	380	151	2.11E-02	6.8	
4	0	5393.45	35	0 4	12.67	648.94	550	123	3.43E-03	16.9	
5	0	5955.38	5	023	33.10	879.20	774	145	4.90E-04	44.7	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:12:25.04

Acquisition Start: 26-AUG-2005 13:00:27.01

Live Time: 0 16:40:01.00 Real Time: 0 16:40:01.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	3949.83	2	0	0.00	72.50	14	118	3.33E-05	70.7	
2	0	4574.85	2	0	89.65	319.50	260	120	3.33E-05	70.7	
3	0	4913.63	3	01	74.18	455.00	380	151	5.00E-05	57.7	
4	0	5300.05	3	01	40.88	611.00	550	123	5.00E-05	57.7	
5	0	5874.88	0	0	0.00	846.00	774	145	0.00E+00	0.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:12:25.33

Pk	It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	0	4000.57* 4652.41*	34 67		350.42	260	120	3.30E-03 6.53E-03 2.10E-02	12.3	
_	-	4888.26* 5393.45*	214 34	0132.24 0 42.67				3.38E-03		
5	0	5955.38*	5	0233.10	879.20	774	145	4.90E-04	44.7	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:12:26

Configuration : MCA0: [AMSCOUNT] 00009067\$1 : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

: VPSCR081705SL04 Sample title

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:10:21 Sample date

Sample quantity : 1.0194 gram : 07 Sample ID

Sample geometry Sample type : TH

Detector geometry: : 008 Detector name

Elapsed real time: 0 02:50:05.00 0.0% Elapsed live time: 0 02:50:05.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV 3.00 % Systematic Error : Errors propagated: Yes Efficiencies at : Peak Energy Efficiency type : Average value

Abundance limit : 75.00

It	Energy	Area FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0 0 0	4000.57* 4652.41* 4888.26* 5393.45* 5955.38*	34 11.91 67 79.36 214132.24 34 42.67 5233.10		260 380 550	118 34.7 120 24.6 151 13.7 123 34.3 145 89.4		TH-232 TH-230 TH229 TH-228 TH-227	0.473 0.939 3.03 0.493 7.223E-02

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:12:55

Spectral File: ND_AMS_ARCHIVE_S:S_0508094A-TH\$08_TH.CNF

80 SAMPLE ID: 0508094A-TH BATCH ID: 1.043E+00 gram ALIQUOT: SAMPLE DATE: 17-AUG-2005 00:00 009 DETECTOR NUMBER: SAMPLE TITLE: VPSCR081705SL05 20.48% AVERAGE EFFICIENCY: 2-SEP-2005 08:10 ACO DATE: 81.64% RECOVERY: 10203. ELAPSED LIVE TIME: 40.40 TRACER FWHM (kev): TH-18A TRACER ID: STANDARD 454. ROI TYPE: LAMBDA VALUE: 4.65 CONFIDENCE FACTOR: TRACER DPM AT SAMPLE DATE: 10.198 2.71 LLD CONSTANT: SOIL SAMPLE MATRIX: 24-AUG-2005 04:24 EFF CAL DATE: ENERGY CAL DATE: 24-AUG-2005 04:24 60001.

BKG FILENAME: B_009_26AUG05 * BKG ELAPSED TIME: 60001

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
TH-227	5850.0	5.15	0.85	97.5	8.038E-02	7.851E-02	1.091E-01
TH-228	5400.0	30.64	1.36	99.9	4.735E-01	1.922E-01	1.237E-01
TH229	4872.0	288.49	0.51	99.5	4.405E+00	6.618E-01	9.209E-02
TH-230	4672.0	121.83	0.17	99.8	1.855E+00	4.554E-01	7.044E-02
TH-232	3997.0	39.83	0.17	100.0	6.052E-01	2.168E-01	7.032E-02

Analyst Tue

<u>9-2-05</u> Date

Reviewer

Date

3,57924E+03 2.90930E+00 9009 Energy Offset: Energy Slope Energy Quad DKA100: [ALPHA.ALUSR.ARCHIVE.S]S_0508094A-TH\$08_TH.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 Sample Time: Sample Type: Sample 4500 Start Time: 2-SEP-2005 08:10: Real Time: 0 02:50:03.00 Live Time: 0 02:50:03.00 VPSCR081705SL05 4000 Sample Title: Spectrum Title മ 0 10 squnoj

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 239: 253: 267: 225: 239: 253: 267: 281: 295: 309: 309: 309: 309: 407: 421: 435: 449: 449: 450: 477: 491: 505: 519: 519: 519: 519: 519: 519: 519: 51	102030000000000000000000000000000000000	10203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000100003100000010001101050035322120000000000	001010001020000000000001325013252120001000030000000000	00000012210000000001123220265310100000040000000000000000000000000000	00000000241000000100010112112425110000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000101000000100000311302134313420000002200001010000000000	00000001000000000001002112010414201000000130000000000	01001000000000000000101035012270100000001010000000100000000000000	00001001010000000000001010040151422210000000000	000000012000010101000100650028341010000000100000100000000000000000000

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:12:30.81

Acquisition Start: 2-SEP-2005 08:10:39.01 Real Time: 0 02:50:03.00 Detector ID: 9

Live Time: 0 02:50:03.00

Sample Id: 08 Batch Id: 0508094A-TH

Sample Type: TH

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	3993.33	40	0	35.85	143.12			3.92E-03		
2	0	4655.34	122	0	55.73	375.33	294	107	1.20E-02	9.1	
3	0	4897.57	289	0	40.40	461.37	400	135	2.83E-02	5.9	
4	0	5392.72	32	0	22.95	639.12	552	109	3.14E-03	17.7	
5	0	5854.74	6	03	49.12	807.33	751	129	5.88E-04	40.8	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:12:53.19

Acquisition Start: 26-AUG-2005 13:00:29.01 Real Time: 0 16:40:01.00

Live Time: 0 16:40:01.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
1	0	3949.78	1	0	2.91	128.00	76	105	1.67E-05100.0	
2	0	4575.23	1		2.91	347.00	294	107	1.67E-05100.0	
3	0	4913.36	3	0	81.46	467.00			5.00E-05 57.7	
4	0	5300.99	8	02	232.74	606.00	552	109	1.33E-04 35.4	
5	0	5875.65	5	02	293.84	815.00	751	129	8.33E-05 44.7	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:12:53.45

Pk :	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	3993.33* 4655.34* 4897.57* 5392.72* 5854.74*	40 122 288 31 5	0 0	55.73 40.40 22.95	143.12 375.33 461.37 639.12 807.33	294 400 552	107 135 109	3.90E-03 1.19E-02 2.83E-02 3.00E-03 5.05E-04	9.1 5.9 18.5	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:12:54

Configuration : MCA0: [AMSCOUNT] 00009067\$1 : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Sample title : VPSCR081705SL05

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:10:39 Sample date

Sample quantity : 1.0428 gram : 08 Sample ID

Sample geometry : TH Sample type

Detector name : 009 Detector geometry:

Elapsed real time: 0 02:50:03.00 0.0% Elapsed live time: 0 02:50:03.00

Half life ratio : 8.00 Energy tolerance : 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes Efficiencies at : Peak Energy Efficiency type : Average value

Abundance limit : 75.00

Ιt	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0	3993.33* 4655.34* 4897.57* 5392.72* 5854.74*	122 288 31	35.85 55.73 40.40 22.95 49.12	143.12 375.33 461.37 639.12 807.33	294 400 552	107 135 109	31.8 18.1 11.8 37.1 96.3		TH-232 TH-230 TH229 TH-228 TH-227	0.494 1.51 3.60 0.387 6.562E-02

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:13:05

****************************** Spectral File: ND AMS ARCHIVE S:S 0508094A-TH\$09 TH.CNF 09 * SAMPLE ID: BATCH ID: 0508094A-TH 1.007E+00 17-AUG-2005 00:00 ALIOUOT: gram SAMPLE DATE: DETECTOR NUMBER: 010 SAMPLE TITLE: VPSCR081705SL06 20.89% 2-SEP-2005 08:10 AVERAGE EFFICIENCY: ACO DATE: 63.11% RECOVERY: ELAPSED LIVE TIME: 10207. 147.20 TRACER FWHM (kev): TH-18A TRACER ID: STANDARD ROI TYPE: 454. LAMBDA VALUE: CONFIDENCE FACTOR: 4.65 10.213 TRACER DPM AT SAMPLE DATE: 2.71 LLD CONSTANT: SAMPLE MATRIX: SOIL

EFF CAL DATE:

BKG ELAPSED TIME:

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
TH-227	5850.0	3.75	4.25	97.5	7.672E-02	1.217E-01	2.515E-01
TH-228	5400.0	62.83	0.17	99.9	1.274E+00	3.924E-01	9.230E-02
TH229	4872.0	228.00	0.00	99.5	4.567E+00	7.395E-01	5.428E-02
TH-230	4672.0	187.64	1.36	99.8	3.747E+00	8.590E-01	1.624E-01
TH-232	3997.0	65.00	0.00	100.0	1.296E+00	3.943E-01	5.402E-02

*** Tracer FWHM > 80.0 Kev * * *

ENERGY CAL DATE: 24-AUG-2005 04:24

B 010 26AUG05

BKG FILENAME:

1205

24-AUG-2005 04:24

60004.

6500 3,48087E+03 3.09467E+00 0009 Offset: Energy Offset: Energy Slope : Energy Quad : DKA100;[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-TH\$09_TH.CNF;1 17-AUG-2005 00:00 Energy (keV) 5000 Sample Type: Sample Sample 4500 2-SEP-2005 08:10: 0 02:50:07.00 0 02:50:07.00 VPSCR081705SL06 Sample Title: Live Time : Real Time : Start Time: Spectrum Title etnuol 6 ഥ

Channel														
1:	10207	10207	0	0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0	0 0	0 0
15: 29:	0 0	0 0	0 0	0 0	0	0	0	0	1	1	Ö	0	0	0
43:	0	0	0	0	0	1	0	0	0	1	1 0	0 1	0 0	0 0
57: 71:	0 0	0 0	0 1	1 0	0 0	0 0	0 1	0 0	0 0	0 1	0	Ó	0	0
85:	0	0	1	0	0	0	Ō	0	0	0	0	0	0	0
99: 113:	0 0	0 0	0 0	1 0	0 0	0 0	2 0	0 0	0	0 0	1 0	0 1	1 0	0 0
127:	0	1	0	Ö	Ö	Ö	ŏ	0	0	0	0	0	Ō	1
141:	0	1	1	1	0 0	0 1	1 3	0 1	0 2	2 0	1 2	0 2	3 1	2 0
155: 169:	0 3	0 3	2 6	2 1	4	3	3	2	1	1	0	1	ò	0
183:	0	0	0	0	0	0	0	0	0	0	0 0	1 0	0 0	0 0
197: 211:	0 0	0 0	0 0	1 1	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	Ö
225:	Ö	ŏ	0	0	1	1	0	0	0	0	0	0	0	0
239: 253:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1	0 0
267:	0	0	0	1	0	ő	Ö	Ö	Ö	ŏ	Ö	Ö	0	0
281:	1	0	0	0	0	0	0 1	0 0	1 0	0 0	0 0	0 1	1 0	0 0
295: 309:	0 0	0 1	0	1 0	0 0	0 0	Ó	0	0	0	Ö	ò	Ö	0
323:	0	0	0	1	0	1	0	2	1	0	0	0	0	0 0
337: 351:	1 0	0 0	0 1	0 0	1 1	0 1	0 1	0 0	1 0	0 0	0 0	0 2	2 0	0
365:	1	0	2	2	2	1	2	4	2	1	0	3	1	2
379: 393:	3 3	2 9	2 6	0 9	2 6	3 18	4 10	4 8	1 8	5 12	1 9	5 6	5 3	2 1
393: 407:	0	1	1	0	0	0	1	0	0	1	0	2	1	0
421:	1	0	0	0	1	2	1	2	2	1	0 3	1 2	1 6	0 8
435: 449:	2 6	3 4	0 6	3 7	2 4	1 9	2 7	3 4	1 4	4 4	4	6	1	3
463:	4	3	2	1	4	1	2	3	5	3	0	1	3	1
477: 491:	3 0	2 1	3 1	2 5	3 3	0 0	1 0	0 0	1 0	2 3	0 3	0 1	1 2	2 0
505:	ő	ó	2	2	0	0	0	2	2	1	1	2	2	0
519: 533:	2 0	1 1	0 0	0 0	1 0	3 0	2 0	3 0	0 0	2 0	0 0	0 0	0 0	1 0
547:	0	Ó	0	Ö	0	Ö	Ö	ő	ő	0	0	0	Ō	0
561:	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 1	1 0	0 1	0 0
575: 589:	0 0	0 1	0 0	0 0	0 1	0 1	3	0	0	0	Ö	.0	Ö	1
603:	0	1	1	0	0	0	2	0	1	0	0	4	0	2 0
617: 631:	0 2	0 0	1 0	1 0	1 0	0 3	1 0	0 1	1 1	0 1	1 2	0 1	0 1	4
645:	3	1	5	3	4	3	1	0	Ô	Ó	0	0	0	0
659: 673:	0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
687:	Ö	0	Ö	ő	ŏ	0	0	0	0	Ō	0	0	0	0
701: 715:	0 0	0 0	0 0	0 1	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0 0
729:	0	0	0	ó	0	0	Ö	0	1	0	0	0	0	0
743:	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0
757: 771:	1 0	0 0	0 0	0 0	0	0	0	1	0	0	ö	1	0	. 0
785:	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0 0
799: 813:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0
827:	0	0	0	Ō	Ō	0	0	0	1	0	0	0	0	0
841: 855:	0 0	0 0	0 0	0 0	0 1	0	0 0	0 0	0 1	1 0	0 0	0 0	0 0	0 0
869:	0	1	0	ŏ	0	Ō	Ō	0	0	0	0	0	0	0
883: 897:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
911:	0	0	0	0	0	0	Ö	0	0	0	0	0	0	0
925:	0	0	0	0	0	1 0	0 0	0 1	0 0	1 1	0 0	1 1	0 0	0 0
939: 953:	0 0	0 1	0 0	0 0	0 1	0	0	1	0	0	0	Ó	0	0
967:	0	0	Ō	Ö	0	0	0	0	0	0	0	0	0 0	0 0
981: 995:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0
1009:	0	Ö	Ö	Ö	ő	ŏ	ŏ	Ö	Ŏ	Ö	0	0	0	0

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:12:59.47

Acquisition Start: 2-SEP-2005 08:10:59.01 Detector ID: 10

Real Time: 0 02:50:07.00 Live Time: 0 02:50:07.00 Batch Id: 0508094A-TH

Sample Id: 09

Sample Type: TH

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	3974.44 4661.39 4895.97 5369.95 5901.67	65 189 228 63 8	0 01 01	17.73 47.20 71.63	160.63 388.13 466.92 627.87 811.37	309 410 553	101 127 103	6.37E-03 1.85E-02 2.23E-02 6.17E-03 7.84E-04	7.3 6.6 12.6	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:13:03.09

Acquisition Start: 26-AUG-2005 13:00:32.01

Real Time: 0 16:40:04.00 Live Time: 0 16:40:04.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
1	0	3951.15	0	0	0.00	153.00	104	99	0.00E+00 0.0	
		4574.21	8	0	0.00	359.00	309	101	1.33E-04 35.4	
3	0	4914.02	0	0	0.00	473.00	410	127	0.00E+00 0.0	
4	Ō	5300.10	1	0	3.09	604.00			1.67E-05100.0	
		5874.73	25	0	4.07	802.00	741	123	4.17E-04 20.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:13:03.36

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	3974.44* 4661.39* 4895.97* 5369.95* 5901.67*	65 188 228 63 4	0 01 01	17.73 47.20 71.63	160.63 388.13 466.92 627.87 811.37	309 410 553	101 127 103	6.37E-03 1.84E-02 2.23E-02 6.16E-03 3.67E-04	7.3 6.6 12.6	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:13:04

Configuration : MCA0: [AMSCOUNT] 00009067\$1
Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3
Sample title : VPSCR081705SL06

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:10:59 Sample date

Sample quantity : 1.0074 gram Sample ID : 09

: TH Sample geometry Sample type

Detector name : 010 Detector geometry:

Elapsed real time: 0 02:50:07.00 0.0% Elapsed live time: 0 02:50:07.00

Half life ratio : 8.00 Energy tolerance : 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes

Efficiencies at : Peak Energy Efficiency type : Average value

Abundance limit : 75.00

It	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0 0	3974.44* 4661.39* 4895.97* 5369.95* 5901.67*	188 2281 631	12.25 17.73 47.20 71.63 0.00	160.63 388.13 466.92 627.87 811.37	309 410 553	101 127 103	24.8 14.7 13.2 25.3		TH-232 TH-230 TH229 TH-228 TH-227	0.818 2.36 2.88 0.804 4.842E-02

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:13:19

Spectral File: ND AMS ARCHIVE S:S 0508094A-TH\$10 TH.CNF 10 SAMPLE ID: BATCH ID: 0508094A-TH 1.005E+00 gram ALIOUOT: SAMPLE DATE: 17-AUG-2005 00:00 DETECTOR NUMBER: 011 VPSCR081705SL07 SAMPLE TITLE: 21.68% AVERAGE EFFICIENCY: 2-SEP-2005 08:11 ACO DATE: 87.62% RECOVERY: 10205. ELAPSED LIVE TIME: 95.80 TH-18A TRACER FWHM (kev): TRACER ID: STANDARD ROI TYPE: LAMBDA VALUE: 454. 4.65 TRACER DPM AT SAMPLE DATE: 10.213 CONFIDENCE FACTOR: 2.71 LLD CONSTANT: SAMPLE MATRIX: SOIL 24-AUG-2005 04:24 ENERGY CAL DATE: 24-AUG-2005 04:24 EFF CAL DATE: 60001. BKG ELAPSED TIME: BKG FILENAME: B 011 26AUG05 ******************************** NUCLIDE ACTIVITY SUMMARY MDC TPU/ERROR %ABN ACTIVITY NUCLIDE ENERGY NET **BKG** pCi/ 2-SIGMA gram AREA pCi/ gram 0.68 1.156E-01 9.316E-02 97.5 2.041E-01 TH-227 5850.0 14.32

9.100E-02 3.456E-01 1.325E+00 4672.0 95.32 0.68 99.8 TH-230 2.392E-01 7.524E-02 7.585E-01 3997.0 54.66 0.34 100.0 TH-232 *************************************

8.231E-01

4.578E+00

*** Tracer FWHM > 80.0 Kev **

58.32

328.32

0.68

0.68

99.9

99.5

Analyst/

TH-228

TH229

5400.0

4872.0

9.2.05

Reviewer

4/210

Date

9.089E-02

9.127E-02

2.540E-01

6.615E-01

```
-1.28734E-04
                                 3.62203E+03
                                            2.82775E+00
                                                                                                                                                                                                                                                                                                                                                                                                       0009
                                  Energy Offset:
                                             Slope
                                                         Energy Quad
                                             Energy
DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-TH$10_TH.CNF;1
                                                                                                                                                                                                                                                                                                                                                                                                       5500
                                  17-AUG-2005 00:00
                                                                                                                                                                                                                                                                                                                                                                                                                   Energy (keV)
                                                                                                                                                                                                                                                                                                                                                                                                       5000
                                   Time:
                                                           Type:
                                  Sample
                                                         Sample
                                              Sample
                                                                                                                                                                                                                                                                                                                                                                                                        4500
             Title : 011
Sample Title: VPSCR081705SL07
                                  2-SEP-2005 08:11:
                                             0 02:50:05.00
0 02:50:05.00
                                                                                                                                                                                                                                                                                                                                                                                                         4000
                                                           Live Time :
                                   Start Time:
                                               Real Time :
  Spectrum
                                                                                                                                                                                                                                        ம
                                                                                                                                                                                                                                                                                                                                                                                                0
                                                                                                                                                                                                                          squnoj
```

Channel														
1:	10205	10205	0 0	0 0	0 1	0 0	0 0	0 1	0	0 0	0 0	0	0 0	0 0
15: 29:	0 0	1 0	0	0	Ó	0	0	0	Ō	- 0	0	0	0	0
43:	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 1	0 0
57: 71:	0	0	0	Ó	0	0	1	0	Õ	Ö	0	0	0	0
85:	0	0 0	0 0	0 0	0 0	0	1 0	0 0	0 0	0 0	0 1	0 0	1 0	0 0
99: 113:	1 1	2	0	1	0	Ô	3	0	0	1	0	0	1	0
127:	0	2 1	1 5	1 1	1 1	3 0	2 2	1 0	3 0	4 0	0 0	6 0	4 0	2 0
141: 155:	0 0	0	0	0	Ó	0	0	0	0	0	0	0	0	0
169: 183:	0 0	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0
197:	0	0	0	0	Ö	0	Ō	0	Ō	0	0	0	0	0
211: 225:	1 0	0 0	0 0	0 0	0	0 1	0 0	0 0	0 0	0 0	0 0	0	0 0	1 0
239:	0	0	0	0	0	Ó	0	0	1	0	0	0	0	0
253:	1	0	0 0	0 0	0	1 0	0 0	0 0	0	0	0 0	0 2	0 0	0 1
267: 281:	0 0	0 0	0	0	0	0	0	Ö	0	0	0	0	0	0
295:	0	0 0	0 0	0 0	0 1	0 0	1 0	0 0	0	1 0	0 0	0 0	0 0	0
309: 323:	0 0	0	0	0	Ö	0	1	0	0	0	0	0	0	0
337: 351:	1 0	0 0	0 1	0 0	0 1	0 0	0 1	1 0	1 1	0 1	2 1	0 0	0 0	1 2
365:	0	1	0	1	4	1	1	0	4	Ó	2	4	3	2
379: 393:	5 1	3 0	4 2	5 0	2 0	3 0	4 0	4 0	3 3	4 0	7 0	2 0	2 2	4 0
407:	1	1	0	0	1	2	0	0	0	1	0	0	1	2
421: 435:	2 3	0 4	0 2	2 2	0 4	2 5	1 7	2 5	5 5	1 9	1 9	1 9	4 8	4
449:	8	10	5	10	5	7	7	4	6	8	5	3	2	3
463: 477:	3 2	7 4	1 4	4 2	2 3	4 2	4 0	7 2	4 0	1 1	6 1	. 5 1	1 1	4 3
491:	2	1	3	0	3	3	1	1	0	1	2	0	5	0 0
505: 519:	3 1	2 2	2 3	3 3	1 2	1 1	1 2	0 1	0 0	0 2	1 0	0 1	1 0	0
533:	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
547: 561:	0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0
575:	0	0	Ō	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0
589: 603:	1 0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0
617:	0	3	0	1	1	1	0	1 0	0 1	1 1	0 3	0 0	2 1	0 1
631: 645:	1 0	1 0	0 1	0 0	0 2	1	3	1	2	ź	3	5	1	4
659:	4	3	3	1	1	0 0	0 0	0 0	0 0	1 0	0 0	0 0	0 0	1 0
673: 687:	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0
701:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 1	0
715: 729:	0 0	0	0	0	ő	0	0	0	0	Ö	0	0	0	0
743: 757:	0 0	0 0	0 0	0 1	1 0	0 1	0 0	0 1	0 0	0 0	0 0	2 0	0 0	0 0
771:	0	1	0	0	1	1	0	1	0	1	0	0	0	0
785: 799:	1 1	0 0	1 0	0 0	0 0	0 0	0 0	1 0	0 0	0 0	0 0	0 1	0 0	0 0
813:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
827: 841:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0
855:	0	0	Ō	0	0	0	Ō	0	0	0	0	0 0	0 0	1 0
869: 883:	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1	0	0
897:	0	0	0	0	0	0	0	0	0	0	0 0	0 0	1 0	0 0
911: 925:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0
939:	0	0	Ó	0	0	0	0 0	0 0	0 0	0	0 1	0 0	0 0	0 0
953: 967:	0 0	0 1	0 0	0 0	1 0	0 0	0	0	0	0	0	2	0	0
981:	0	0	0	0	0	0	0 0	0 0	1 0	0 0	0 0	0 0	0 0	0 0
995: 1009:	0 0	0 0	1 0	0 0	0 0	0 0	0	0	0	0	0	0	Ö	Ö
1023:	Ō	0											240	

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:13:08.65

Detector ID: 11 Acquisition Start: 2-SEP-2005 08:11:18.01

Live Time: 0 02:50:05.00 Real Time: 0 02:50:05.00

Batch Id: 0508094A-TH Sample Id: 10

Sample Type: TH

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	3984.82 4664.16 4900.40 5392.78 5797.64	55 96 329 59 15	0 0 01	65.92 95.80 22.67	129.05 374.94 461.79 645.15 798.40	288 398 554	110 139 114	5.39E-03 9.41E-03 3.22E-02 5.78E-03 1.47E-03	10.2 5.5 13.0	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:13:17.70

Acquisition Start: 26-AUG-2005 13:00:35.01

Live Time: 0 16:40:01.00 Real Time: 0 16:40:01.00

Pk	It	Energy	Area	Bkgnd FW	HM Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	3949.72	2	0158.3	35 116.50	63	108	3.33E-05	70.7	
2	0	4575.43	4	0115.9	94 342.50	288	110	6.67E-05	50.0	
3	0	4914.51	4	0234.	70 467.00	398	139	6.67E-05	50.0	
4	0	5300.39	4	0127.2	25 610.50	554	114	6.67E-05	50.0	
5	0	5875.15	4	0226.2	22 828.00	761	135	6.67E-05	50.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:13:17.99

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	3984.82*	55	0	23.59	129.05			5.36E-03		
2	0	4664.16*	95	0	65.92	374.94	288	110	9.34E-03	10.3	
3	0	4900.40*	328	0	95.80	461.79	398	139	3.22E-02	5.5	
4	0	5392.78*	58	01	L22.67	645.15	554	114	5.71E-03	13.2	
5	0	5797.64*	14		376.09	798.40	761	135	1.40E-03	27.2	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:13:18

Configuration : MCA0:[AMSCOUNT]00009067\$1
Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3
Sample title : VPSCR081705SL07

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:11:18 Sample date

Sample quantity : 1.0049 gram Sample ID : 10

: TH Sample geometry Sample type

Detector name : 011 Detector geometry:

0.0% Elapsed real time: 0 02:50:05.00 Elapsed live time: 0 02:50:05.00

Energy tolerance : Half life ratio : 8.00 100.00 keV Errors propagated: Yes Systematic Error : 3.00 % Efficiency type : Average value Efficiencies at : Peak Energy

Abundance limit : 75.00

It	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0	3984.82*	55	23.59	129.05	63	108	27.2		TH-232	0.665
0	4664.16*	95	65.92	374.94	288	110	20.6		TH-230	1.16
0	4900.40*	328	95.80	461.79	398	139	11.1		TH229	4.01
0	5392.78*	581	L22.67	645.15	554	114	26.4		TH-228	0.721
0	5797.64*	143	376.09	798.40	761	135	54.3		TH-227	0.179

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:13:36

BATCH ID:	0508094A-TH	*	SAMPLE ID:	11
SAMPLE DATE:	L7-AUG-2005 00:00	*	ALIQUOT: 1.007E+0	0 gram
SAMPLE TITLE:	VPSCR081705SL08	*	DETECTOR NUMBER:	012
ACO DATE:	2-SEP-2005 08:11	*	AVERAGE EFFICIENCY:	21.19%
ELAPSED LIVE TIME		*	RECOVERY:	93.63%
TRACER ID:	TH-18A	*	TRACER FWHM (kev):	126.04
LAMBDA VALUE:	452.	*	ROI TYPE:	STANDARD
TRACER DPM AT SAME	PLE DATE: 10.155	*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
ENERGY CAL DATE: 2	24-AUG-2005 04:24	*	EFF CAL DATE: 24-AUG-20	05 04:24
BKG FILENAME:	B 012 26AUG05	*	BKG ELAPSED TIME:	60003.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
TH-227	5850.0	3.83	0.17	97.5	5.213E-02	5.527E-02	6.290E-02
TH-228	5400.0	58.81	1.19	99.9	7.927E-01	2.441E-01	1.032E-01
TH229	4872.0	341.00	0.00	99.5	4.541E+00	6.487E-01	3.609E-02
TH-230	4672.0	220.32	0.68	99.8	2.925E+00	6.098E-01	8.690E-02
TH-232	3997.0	63.83	0.17	100.0	8.459E-01	2.511E-01	6.133E-02

*** Tracer FWHM > 80.0 Kev

-1,73379E-04 3,49250E+03 3.08922E+00 9000 Energy Offset: Slope Energy Quad Energy DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-TH\$11_TH.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 Time: Type: Sample Sample Sample 4500 Sample Title: VPSCR081705SL08 2-SEP-2005 08:11: 0 02:50:03.00 0 02:50:03.00 4000 Live Time : Start Time: Real Time : Spectrum Title 10 0 ம squnoj

Channel														
1: 15:	10203 0	10203 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0
29: 43:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0
57:	0	0	1	0	0	0	0 0	0 0	0	0	0 0	0	0 0	0 0
71: 85:	0 0	0 0	0 0	0 0	0 0	0 0	0	1 .	0	0	0	0	0	0
99: 113:	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 1	0 0	0 0
127:	1	0	0	0	0	1	0	0	1	2	0	0	0 2	0 1
141: 155:	0 0	0 1	0 1	1 1	0 1	0 0	1 1	1 1	2 4	0 5	0 2	2	3	3
169:	1	4	9	2	2	0 0	3 0	1 0	0 0	1 0	0 0	0 0	0 0	0 0
183: 197:	0 0	0 0	0 0	0	0	0	0	0	0	Ō	0	0	0	0
211: 225:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0
239:	1	0	1	0	0	0	0	0	0 1	0	0 0	0 0	0 0	0 0
253: 267:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	Ō	0	0	0	0	0	1
281: 295:	0 0	1 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0
309:	0	0	0	0	0	0	0	0	0	1	0	1 0	0 0	0 0
323: 337:	0	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	1 1	1	0	0
351:	0	0	0	0 3	2 1	0 5	1 2	0 5	0 2	3 3	0 1	0 2	0 1	0 6
365: 379:	1 2	1 3	4	7	4	3	3	3	1	2	4	7	9	8
393: 407:	9 1	11 0	7 0	6 1	12 0	12 0	11 0	13 0	9 0	8 1	7 2	3 2	2 1	0 0
421:	0	0	0	1	0	0	2	1	1 5	2 7	2 1	3 8	1 9	0 8
435: 449:	1 6	1 11	2 2	5 6	3 6	3 8	2 7	1 10	8	11	9	9	8	2
463: 477:	3 4	7 7	9 6	1 3	1 3	3 2	6 2	4 6	5 1	3 0	6 3	3 0	2 0	5 3
491:	0	5	3	1	3	3	0	3	1	2	1	0 1	1 0	0 3
505: 519:	0 1	1 5	2 1	0 1	0 1	1 1	2 1	0 5	0 3	4 2	2	2	0	0
533: 547:	0 0	0 0	0 1	0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 2	0 0
561:	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
575: 589:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 1	0 0	2	0
603:	0	0	0	Ō	0	0	0 1	1 0	0 0	2 0	0 0	0	1 0	1 4
617: 631:	1 0	1 0	1 0	0 1	1	0	1	0	2	2	2	2	2	0
645: 659:	0	6 0	3 0	3 0	1 0	2 0	1 0	2 0	2 0	4 0	2 0	1 0	0 0	Ŏ
673:	0	0	Ō	0	0	0	0	0 0	0	0 0	0 0	0	0 0	0 0
687: 701:	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0
715: 729:	0 1	0 1	0 0	0 0	0 0	0 0	,0 0	1 0	0 0	0 0	0 0	1 0	0 0	0 0
743:	0	1	1	0	0	0	0	0 0	0	0 0	0 0	0 0	0 0	1 0
757: 771:	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0
785: 799:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
813:	0	0	0	0	0	Ô	0	Ô	0	0	0 0	0	0 0	0 0
827: 841:	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	2	0	0	0	0	0
855: 869:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0
883:	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
897: 911:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	Ō	0	0	0	Ö
925 : 939 :	0	0	1	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0 0 0 0 0
953:	0	0	0	0	1	0	0	0	0	0	0	0 0	0	0
967: 981:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0
995:	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0
1009: 1023:	0 0	0 0	0	0	U	U	U	U	U	J	•	Ū		·
													247	

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:13:23.26

Detector ID: 12 Acquisition Start: 2-SEP-2005 08:11:36.01

Live Time: 0 02:50:03.00 Real Time: 0 02:50:03.00

Batch Id: 0508094A-TH Sample Id: 11

Sample Type: TH

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	3983.38 4664.03 4899.50 5382.14 5923.80	64 221 341 60 4	0 0 1 0	65.70 L26.04 76.31	160.34 387.67 467.73 634.27 825.25	307 409 554	102 129 105	6.27E-03 2.17E-02 3.34E-02 5.88E-03 3.92E-04	6.7 5.4 12.9	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:13:34.14

Acquisition Start: 26-AUG-2005 13:00:38.01

Live Time: 0 16:40:03.00 Real Time: 0 16:40:03.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
1	0	3950.47	1	0	3.09	149.50	100	100	1.67E-05100.0	
2	0	4574.74	4	02	56.40	357.50	307	102	6.67E-05 50.0	
3	0	4914.91	0	0	0.00	473.00	409	129	0.00E+00 0.0	
4	0	5300.90	7	0	0.00	606.00	554	105	1.17E-04 37.8	
5	0	5875.40	1	0	3.09	808.00	746	125	1.67E-05100.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:13:34.71

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	3983.38* 4664.03* 4899.50* 5382.14* 5923.80*	64 220 341 59 4	0 01 0	65.70 26.04 76.31	160.34 387.67 467.73 634.27 825.25	307 409 554	102 129 105	6.26E-03 2.16E-02 3.34E-02 5.76E-03 3.75E-04	6.7 5.4 13.2	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:13:35

: MCA0: [AMSCOUNT] 00009067\$1 Configuration

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 sample title : VPSCR081705SL08

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:11:36 Sample date

Sample quantity : 1.0073 gram : 11 Sample ID

Sample type Sample geometry : TH

Detector name : 012 Detector geometry:

0.0% Elapsed real time: 0 02:50:03.00 Elapsed live time: 0 02:50:03.00

Half life ratio : 8.00 Energy tolerance : 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes Efficiencies at : Peak Energy Efficiency type : Average value

Abundance limit : 75.00

It	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0 0 0	3983.38* 4664.03* 4899.50* 5382.14* 5923.80*	220 3411 59	25.08 65.70 26.04 76.31 3.09	160.34 387.67 467.73 634.27 825.25	307 409 554	102 129 105	25.1 13.5 10.8 26.4 104.8		TH-232 TH-230 TH229 TH-228 TH-227	0.792 2.74 4.25 0.742 4.881E-02

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:13:55

*****	******	******	********
C	ATO AMO ADOITTIO C.C	0E000047 TUC12 TU	CNE

Spectral File: ND AMS ARCHIVE S:S 0508094A-TH\$12_TH.CNF

12 0508094A-TH SAMPLE ID: BATCH ID: 1.057E+00 gram ALIQUOT: 17-AUG-2005 00:00 SAMPLE DATE: 013 VPSCR081705SL09 DETECTOR NUMBER: SAMPLE TITLE: 21.28% AVERAGE EFFICIENCY: ACQ DATE: 2-SEP-2005 08:11 76.45% RECOVERY: ELAPSED LIVE TIME: 10200. TRACER FWHM (kev): 47.25 TRACER ID: TH-18A ROI TYPE: STANDARD 454. LAMBDA VALUE: CONFIDENCE FACTOR: 4.65 TRACER DPM AT SAMPLE DATE: 10.202 2.71 LLD CONSTANT: SAMPLE MATRIX: SOIL 24-AUG-2005 04:24 EFF CAL DATE: ENERGY CAL DATE: 24-AUG-2005 04:24

BKG ELAPSED TIME: B 013 26AUG05 BKG FILENAME:

NUCLIDE ACTIVITY SUMMARY

gram
4E-01
8E-02
4E-02
0E-01
1E-01
9

```
3,53324E+03
                                       2,92594E+00
                                                                                                                                                                                                                                                                                                                                                           0009
                               Offset:
                                         Slope
                                                   Quad
                               Energy
                                        Energy
                                                   Energy
DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-TH$12_TH.CNF;1
                                                                                                                                                                                                                                                                                                                                                           5500
                              17-AUG-2005 00:00
                                                                                                                                                                                                                                                                                                                                                                      Energy (keV)
                                                                                                                                                                                                                                                                                                                                                            5000
                                                     Type:
                                                   Sample
                               Sample
                                         Sample
                                                                                                                                                                                                                                                                                                                                                             4500
                    VPSCR081705SL09
                               2-SEP-2005 08:11:
                                        0 02:50:00.00
0 02:50:00.00
                                                                                                                                                                                                                                                                                                                                                             4000
                       Sample Title:
                                                     Live Time :
                                           Time :
                                Start Time:
   Spectrum
             Title
                                           Real
                                                                                                                                                                                                                                      മ
                                                                                                                                                                                                                                                                                                                                                      0
                                                                                                                    10
                                                                                                                                                                                                   squnoj
```

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 239: 239: 253: 267: 281: 225: 281: 295: 309: 323: 379: 365: 449: 449: 449: 449: 450: 575: 589: 575: 589: 575: 589: 575: 589: 575: 589: 575: 589: 575: 589: 575: 589: 589: 589: 589: 589: 589: 589: 58	10200 0 0 0 0 0 0 0 1 1 0 5 0 0 0 0 0 0 0 0	10200 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 4 3 0 0 2 8 0 0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000010000121000000000000013510193630300000110110000000000100100000000	000000000000000000000000000000000000000	0001100010100010000000101531146321110000000201000001000000000000000000	000000010010000000000000000000000000000	000000000000000000000000000000000000000	0000001001100000000000011453004421111000001112000000000000000000000	00000000320000000000010011211191432200000000000000000000000000000000000	000000000000000000000000000000000000000	0000000001000100000001011702023320220000011500000010000010000000000	000000001200000000000101060013120121001002020000000000	000000011400000000100102150058211111100000212400000000000000000000000	000000000000000000000000000000000000000

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:13:40.40

Detector ID: 13 Acquisition Start: 2-SEP-2005 08:11:55.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.00

Batch Id: 0508094A-TH Sample Id: 12

Sample Type: TH

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0	3988.03 4664.17 4901.10 5383.58 5871.13	49 129 281 69 8	0 0	8.71 47.25 98.03	156.63 394.10 478.68 653.22 832.87	309 416 568	108 135 110	4.80E-03 1.26E-02 2.75E-02 6.76E-03 7.84E-04	8.8 6.0 12.0	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:13:53.02

Acquisition Start: 26-AUG-2005 13:00:40.01

Live Time: 0 16:40:04.00 Real Time: 0 16:40:04.00

Pk It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 0 3 0 4 0	3951.61 4575.13 4913.15 5299.30 5875.50	6 4 1 3 4	0242.85 0 2.93	362.50 483.00 622.50	309 416 568	108 135 110	1.00E-04 40.8 6.67E-05 50.0 1.67E-05100.0 5.00E-05 57.7 6.67E-05 50.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:13:53.30

Pk :	Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0	3988.03* 4664.17* 4901.10* 5383.58* 5871.13*	48 128 281 68 7	0 0	8.71 47.25 98.03	156.63 394.10 478.68 653.22 832.87	309 416 568	108 135 110	4.70E-03 1.26E-02 2.75E-02 6.71E-03 7.18E-04	8.9 6.0 12.1	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:13:54

Configuration : MCA0: [AMSCOUNT] 00009067\$1 Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL09 Sample date : 17-AUG-2005 00:0 : 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:11:55

Sample quantity : 1.0569 gram Sample ID : 12

Sample geometry : TH Sample type

Detector geometry: Detector name : 013

Elapsed real time: 0 02:50:00.00 0.0% Elapsed live time: 0 02:50:00.00

Energy tolerance : 100.00 keV Half life ratio : 8.00 3.00 % Systematic Error : Errors propagated: Yes

Efficiency type : Average value Efficiencies at : Peak Energy

Abundance limit : 75.00

It	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0 0	3988.03* 4664.17* 4901.10* 5383.58* 5871.13*	128 281 4 68 9	8.71 17.25	156.63 394.10 478.68 653.22 832.87	309 416 568	108 135 110	29.2 17.7 11.9 24.3 77.8		TH-232 TH-230 TH229 TH-228 TH-227	0.565 1.51 3.32 0.821 8.857E-02

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:14:13

*

BATCH ID:	0508094A-TH	*	SAMPLE ID:		13
	JG-2005 00:00	*	ALIQUOT:	9.981E-01	gram
	SCR081705SL10	*	DETECTOR NUMBE	R:	014
	EP-2005 08:12	*	AVERAGE EFFICI	ENCY:	20.63%
ELAPSED LIVE TIME:	10203.	*	RECOVERY:		86.34%
TRACER ID:	TH-18A	*	TRACER FWHM (ke	ev):	56.55
LAMBDA VALUE:	453.	*	ROI TYPE:	ST	ANDARD
TRACER DPM AT SAMPLE I	DATE: 10.184	*	CONFIDENCE FAC	TOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:		2.71
ENERGY CAL DATE: 24-AU	JG-2005 04:24	*	EFF CAL DATE:	24-AUG-2005	04:24
BKG FILENAME:		*	BKG ELAPSED TI	ME:	60001.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
TH-227	5850.0	5.79	2.21	97.5	8.860E-02	8.975E-02	1.471E-01
TH-228	5400.0	69.96	2.04	99.9	1.060E+00	3.104E-01	1.394E-01
TH229	4872.0	306.98	1.02	99.5	4.596E+00	6.780E-01	1.109E-01
TH-230	4672.0	246.66	0.34	99.8	3.682E+00	7.621E-01	8.093E-02
TH-232	3997.0	85.83	0.17	100.0	1.279E+00	3.463E-01	6.895E-02

Analyst Lice

Date

Paviower

Date

-1.57707E-04 3.52523E+03 3.03541E+00 6000 Offset: Slope Quad Energy Energy Energy DKA100: [ALPHA.ALUSR.ARCHIVE.S]S_0508094A-TH\$13_TH.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 13 Time: Type: Sample Sample Sample 4500 Start Time: 2-SEP-2005 08:12: Real Time : 0 02:50:03.00 Live Time : 0 02:50:03.00 VPSCR081705SL10 4000 Title: Spectrum Sample Title ហ 0 10 squnoj

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 183: 225: 239: 253: 267: 281: 295: 309: 323: 3407: 449: 449: 449: 449: 450: 505: 519: 519: 519: 519: 519: 519: 519: 51	10203 0000000111140000000100012480026632000001062000010000000000000000000	10203 00000100001200010000003372134200201000101000000000000000000000000	001001100001200010000000000000554223110000011100000000000000000000000000	0000000002511001000000011570017614260000030400000001000000000000000	00000000011000011000000274201892232200000105000010010000000000000000000	0000100001200001000000022592116440120000101010000001000000000000000	0000000011010000100100122653011141431100000101000001000001000000000	000000000430000000000006770208323200000101130000010000000000000000	00000010314000100000000648031831030000100302000000000000000000000	00100000113000100000101067422461233300000114100000000000000000000000000	00000001025000010010000042030156122110000112420000000000000000000000000	000000001170000000101100473128530110000001113000001100000000000000000	000000011240000000110002952013244211000002121000002000010000000000	001000000530000001000000660116242320000000000000000000000000000000000

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:13:59.06

Acquisition Start: 2-SEP-2005 08:12:16.01 Detector ID: 14

Real Time: 0 02:50:03.00 Live Time: 0 02:50:03.00 Batch Id: 0508094A-TH

Sample Id: 13 Batch Id:

Sample Type: TH

Pk :	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0	3998.74 4665.39 4907.93 5388.62 5797.60	86 247 308 72 8	0 0	98.49 56.55 29.56	157.28 383.25 466.84 634.82 780.25	301 404 551	104 131 106	8.43E-03 2.42E-02 3.02E-02 7.06E-03 7.84E-04	6.4 5.7 11.8	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:14:11.49

Acquisition Start: 26-AUG-2005 13:00:43.01

Real Time: 0 16:40:01.00 Live Time: 0 16:40:01.00

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 0 3 0 4 0	3950.09 4575.62 4914.15 5299.66 5874.88	1 2 6 12 13	0 02 02	5.69	352.50 469.00 603.50	301 404 551	104 131 106	1.67E-05100.0 3.33E-05 70.7 1.00E-04 40.8 2.00E-04 28.9 2.17E-04 27.7	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:14:11.79

Pk It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	3998.74* 4665.39* 4907.93* 5388.62* 5797.60*	86 247 307 70 6	0 0	56.55 29.56	157.28 383.25 466.84 634.82 780.25	301 404 551	104 131 106	8.41E-03 2.42E-02 3.01E-02 6.86E-03 5.67E-04	6.4 5.7 12.2	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:14:12

Configuration : MCA0:[AMSCOUNT]00009067\$1
Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3
Sample title : VPSCR081705SL10

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:12:16 Sample date

Sample quantity : 0.99810 gram : 13 Sample ID

: TH Sample geometry Sample type

Detector name : 014 Detector geometry:

Elapsed real time: 0 02:50:03.00 0.0% Elapsed live time: 0 02:50:03.00

Half life ratio : Energy tolerance: 100.00 keV 8.00 Systematic Error : 3.00 % Errors propagated: Yes Efficiencies at : Peak Energy Efficiency type : Average value

Abundance limit : 75.00

It	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0 0	3998.74* 4665.39* 4907.93* 5388.62* 5797.60*	247 307 70	47.78 98.49 56.55 29.56	157.28 383.25 466.84 634.82 780.25	301 404 551	104 131 106	21.6 12.7 11.4 24.3		TH-232 TH-230 TH229 TH-228 TH-227	1.10 3.18 3.97 0.915 7.650E-02

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:14:30

		*		
BATCH ID:	0508094A-TH	*	SAMPLE ID:	14
SAMPLE DATE: 17-AU	JG-2005 00:00	*	ALIQUOT: 9.901E-01	gram
SAMPLE TITLE: VPS	SCR081705SL11	*	DETECTOR NUMBER:	015
ACQ DATE: 2-SI	EP-2005 08:12	*	AVERAGE EFFICIENCY:	21.46%
ELAPSED LIVE TIME:	10200.	*	RECOVERY:	71.31%
TRACER ID:	TH-18A	*	TRACER FWHM (kev):	36.74
LAMBDA VALUE:	452.	*	ROI TYPE: ST	'ANDARD
TRACER DPM AT SAMPLE I	DATE: 10.162	*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
ENERGY CAL DATE: 24-A	JG-2005 04:24	*	EFF CAL DATE: 24-AUG-2005	04:24
BKG FILENAME:	3 015 26AUG05	*	BKG ELAPSED TIME:	60001.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
TH-227	5850.0	7.32	0.68	97.5	1.315E-01	1.047E-01	1.174E-01
TH-228	5400.0	21.32	0.68	99.9	3.791E-01	1.792E-01	1.145E-01
TH229	4872.0	263.13	1.87	99.5	4.623E+00	7.162E-01	1.593E-01
TH-230	4672.0	75.45	2.55	99.8	1.322E+00	3.829E-01	1.775E-01
TH-232	3997.0	29.15	0.85	100.0	5.097E-01	2.106E-01	1.223E-01

Analy

Reviewer

Date

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:14:17.14

Acquisition Start: 2-SEP-2005 08:12:35.01 Detector ID: 15

Real Time: 0 02:50:00.00

Live Time: 0 02:50:00.00 Batch Id: 0508094A-TH Sample Id: 14

Sample Type: TH

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
	_	3982.54 4672.58	30 78			165.37 398.63			2.94E-03 7.65E-03		
3	0	4899.11	265	0	36.74	476.28	417	130	2.60E-02 2.16E-03	6.1	
_	_	5400.88 5889.34	22 8			650.27 822.37			7.84E-04		

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:14:28.82

Acquisition Start: 26-AUG-2005 13:00:46.01

Live Time: 0 16:40:01.00 Real Time: 0 16:40:01.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	3950.05	5	029	4.17	154.50	104	102	8.33E-05	44.7	
2	0	4575.45	15	027	9.01	365.50	314	104	2.50E-04	25.8	
3	0	4914.27	11	036	0.89	481.50	417	130	1.83E-04	30.2	
4	0	5299.80	4	029	1.14	615.00	563	105	6.67E-05	50.0	
5	0	5875.61	4	010	6.14	817.50	755	126	6.67E-05	50.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:14:29.10

Pk It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	3982.54* 4672.58* 4899.11* 5400.88* 5889.34*	29 75 263 21 7	0 28.31 0 36.74 0 29.51	165.37 398.63 476.28 650.27 822.37	314 417 563	104 130 105	2.86E-03 7.40E-03 2.58E-02 2.09E-03 7.18E-04	11.7 6.2 22.1	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:14:29

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL11

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:12:35

Sample ID : 14 Sample quantity : 0.99010 gram

Sample type : TH Sample geometry :

Detector name : 015 Detector geometry:

Energy tolerance: 100.00 keV Half life ratio: 8.00 Errors propagated: Yes Systematic Error: 3.00 % Efficiency type: Average value Efficiencies at: Peak Energy

Abundance limit : 75.00

It	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0	3982.54* 4672.58*		72.03 28.31	165.37 398.63			37.7 23.5		TH-232 TH-230	0.363 0.942
0	4899.11* 5400.88* 5889.34*	21	36.74 29.51 303.27	476.28 650.27 822.37	563	105	12.4 44.1 77.8		TH229 TH-228 TH-227	3.30 0.270 9.374E-02

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:14:46

Sportral File, ND AMS ARCHIVE S.S 0508094A-THS15 TH CNF

Spectrar	rite:	MD AMS	AKCHIVE 2:2	0300034A	- 1115 12 -	_ III. CIVI
* * *****	*****	******	- *************	****	*****	 *************

BATCH ID:	0508094A-TH	*	SAMPLE ID:		15
SAMPLE DATE:	17-AUG-2005 00:00	*	ALIQUOT:	9.961E-01	gram
SAMPLE TITLE:	VPSCR081705SL12	*	DETECTOR NUMBE	R:	016
ACQ DATE:	2-SEP-2005 08:12	*	AVERAGE EFFICI	ENCY:	20.92%
ELAPSED LIVE TIM	ME: 10205.	*	RECOVERY:		83.30%
TRACER ID:	TH-18A	*	TRACER FWHM (ke		76.19
LAMBDA VALUE:	453.	*	ROI TYPE:	ST	ANDARD
TRACER DPM AT SA	AMPLE DATE: 10.193	*	CONFIDENCE FAC	TOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:		2.71
ENERGY CAL DATE:	24-AUG-2005 04:24	*	EFF CAL DATE:	24-AUG-2005	
BKG FILENAME:	B 016 26AUG05	*	BKG ELAPSED TI	ME:	60002.
					

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
TH-227	5850.0	0.60	3.40	97.5	9.379E-03	6.709E-02	1.766E-01
TH-228	5400.0	27.28	2.72	99.9	4.233E-01	1.848E-01	1.585E-01
TH229	4872.0	300.64	1.36	99.5	4.609E+00	6.845E-01	1.247E-01
TH-230	4672.0	76.98	1.02	99.8	1.177E+00	3.321E-01	1.132E-01
TH-232	3997.0	36.66	0.34	100.0	5.594E-01	2.072E-01	8.273E-02

```
-1.46731E-04
                             3,51749E+03
                                      3.04800E+00
                                                                                                                                                                                                                                                                                                                                                            6000
                              Offset:
                                        Slope
                                                  Quad
                              Energy
                                       Energy
                                                  Energy
DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-TH$15_TH.CNF;1
                                                                                                                                                                                                                                                                                                                                                            5500
                              17-AUG-2005 00:00
                                                                                                                                                                                                                                                                                                                                                                     Energy (keV)
                                                                                                                                                                                                                                                                                                                                                            5000
                              Time:
                                                    Type:
                                        Sample
Sample
                              Sample
                                                                                                                                                                                                                                                                                                                                                            4500
                   VPSCR081705SL12
                              2-SEP-2005 08:12:
                                       0 02:50:05.00
0 02:50:05.00
                                                                                                                                                                                                                                                                                                                                                            4000
                   Sample Title:
                               Start Time:
                                         Real Time :
                                                   Live Time
 Spectrum
           Title
                                                                                             70
                                                                                                                                                                                                                           ம
                                                                                                                                                                                                                                                                                                                                                     0
                                                                                                                                                                                                  squnog
```

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 183: 211: 225: 239: 257: 281: 295: 309: 323: 365: 447: 435: 449: 477: 491: 505: 519: 519: 519: 519: 519: 519: 519: 51	102050000000000000000000000000000000000	10205 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0	000000000110000000000000140101231230000010000010000000000	0000000130100000001001033143544202000000210000010000	00000010032000000000010150006331410000001000000000000000000000000	00000101000011110100100203005531123000000220000000000	000000011210010001000000040359231120000000000000000000000000000000000	0000000011000000000111311164402100001123000000000000000000000000000	000000000000000000000000000000000000000	000000001010000000000000000012200000001000000	00000010002000001000001310012821210100000010000000000	00000100000000000000001124033833100000010000002000000	0000000001100000200000151135521220000010100000010000000	000000010010001000001000001039611101000000110000000000
715: 729: 743: 757: 771: 785: 799:	0 1 0 0 0 0	0 0 0 0 0	0 1 0 0 0 0	0 0 0 0 1 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 1	0 0 0 0 0	0 1 0 0 0 0	0 2 0 0 0 0	0 1 0 0 0 0	0 0 0 0

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:14:34.26

Detector ID: 16 Acquisition Start: 2-SEP-2005 08:12:54.01

Live Time: 0 02:50:05.00 Real Time: 0 02:50:05.00

Batch Id: 0508094A-TH Sample Id: 15

Sample Type: TH

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0	3982.84 4669.71 4906.22 5403.72 5905.55	37 78 302 30 4	0 0 0	0.00 76.19 53.82	153.81 385.17 466.08 638.47 815.50	302 404 550	103 130 106	3.63E-03 7.64E-03 2.96E-02 2.94E-03 3.92E-04	11.3 5.8 18.3	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:14:44.10

Acquisition Start: 26-AUG-2005 13:00:48.01

Live Time: 0 16:40:02.00 Real Time: 0 16:40:02.00

Pk	It	Energy	Area	Bkgnd FWHN	ß Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	3950.36 4575.15 4913.27 5300.65 5876.04	2 6 8 16 20	0289.50 0350.52 0 0.00	143.00 5 353.00 2 468.50 602.50 805.00	302 404 550	103 130 106	3.33E-05 1.00E-04 1.33E-04 2.67E-04 3.33E-04	40.8 35.4 25.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:14:44.67

Pk I	t	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	3982.84* 4669.71* 4906.22* 5403.72* 5905.55*	37 77 301 27 1	0 0	0.00 76.19 53.82	153.81 385.17 466.08 638.47 815.50	302 404 550	103 130 106	3.59E-03 7.54E-03 2.95E-02 2.67E-03 5.86E-053	11.5 5.8 20.2	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:14:45

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Sample title : VPSCR081705SL12

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:12:54 Sample date

Sample quantity : 0.99610 gram : 15 Sample ID

: TH Sample geometry Sample type

Detector name : 016 Detector geometry:

Elapsed real time: 0 02:50:05.00 0.0% Elapsed live time: 0 02:50:05.00

8.00 Half life ratio : Energy tolerance: 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes Efficiencies at : Peak Energy Efficiency type : Average value

Abundance limit : 75.00

It	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0 0	3982.84* 4669.71* 4906.22* 5403.72* 5905.55*	77 301 27	90.68 0.00 76.19 53.82 62.13	153.81 385.17 466.08 638.47 815.50	302 404 550	103 130 106	33.2 23.0 11.6 40.5 715.1		TH-232 TH-230 TH229 TH-228 TH-227	0.466 0.980 3.84 0.353 7.813E-03

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:41:34

Spectral File: ND AMS ARCHIVE_S:S_0508094A-TH\$16_TH.CNF

		*		
BATCH ID:	0508094A-TH	*	SAMPLE ID:	16
SAMPLE DATE:	17-AUG-2005 00:00	*	ALIQUOT: 1.038E+00	gram
SAMPLE TITLE:	VPSCR081705SL13	*	DETECTOR NUMBER:	017
ACQ DATE:	2-SEP-2005 08:50	*	AVERAGE EFFICIENCY:	20.47%
ELAPSED LIVE TIM	E: 10208.	*	RECOVERY:	66.57%
TRACER ID:	TH-18A	*	TRACER FWHM (kev):	86.86
LAMBDA VALUE:	454.	*	ROI TYPE: ST.	ANDARD
TRACER DPM AT SA	MPLE DATE: 10.198	*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
ENERGY CAL DATE:	24-AUG-2005 09:58	*	EFF CAL DATE: 24-AUG-2005	09:58
BKG FILENAME:	B 017 26AUG05	*	BKG ELAPSED TIME:	60001.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
TH-227	5850.0	12.81	1.19	97.5	2.462E-01	1.511E-01	1.494E-01
TH-228	5400.0	45.13	1.87	99.9	8.588E-01	3.018E-01	1.698E-01
TH229	4872.0	235.32	0.68	99.5	4.424E+00	7.099E-01	1.231E-01
TH-230	4672.0	288.32	0.68	99.8	5.405E+00	1.140E+00	1.227E-01
TH-232	3997.0	59.98	1.02	100.0	1.122E+00	3.524E-01	1.386E-01

*** Tracer FWHM > 80.0 Kev ***

Analvst

Reviewer

Date

\sim	h ~	n	1e	

channet													
1:	10208	10208	0	1	0	0	0	0	0	0 1	0 0	0 0	0 0
15:	1 0	0 0	0 0	0 0	1 0	1 0	2 0	0 0	0 0	0	0	0	0
29: 43:	0	0	0	0	ő	1	ĭ	ĭ	Ŏ	Ö	Ō	0	0
57:	1	0	0	0	0	0	0	1	0	0	0	0 0	0 0
71:	0	0	0	0 0	1 0	0 0	0 0	0 0	0 0	1 0	1 0	0	0
85: 99:	0 1	1 0	0 0	0	0	0	0	ő	Ö	ŏ	ŏ	ĭ	Ö
113:	Ö	Ö	Ŏ	Ö	Ö	0	1	1	0	0	1	0	0
127:	0	1	1	0	1	0	0	0	0 0	0 0	1 0	0 1	0 0
141: 155:	0 1	0 1	0 0	0 1	0 1	0 0	0 0	0 1	1	0	0	ò	ő
169:	0	0	0	Ó	1	Ö	ŏ	Ö	1	ō	0	0	0
183:	0	2	2	1	2	0	0	2	1	0	2	0 0	0
197:	0	1 4	2 3	0 3	5 3	1 2	0 1	0 0	2 0	3 0	2 1	0	0
211: 225:	2 0	0	3. 0	0	1	0	ó	Ö	1	Ŏ	0	0	0
239:	0	0	0	0	1	0	0	0	0	0	0	0	0 0
253:	0	0 0	0 1	0 0	0 2	0 0	0 0	0 0	0 0	1 1	0 0	0 0	1
267: 281:	1	0	0	1	0	0	Ö	Ŏ	Ŏ	ò	2	Ö	1
295:	ö	Ö	Ĭ	ò	0	0	0	0	0	0	0	0	0
309:	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 1	0 0	0 0
323: 337:	1 1	0 0	0 0	1 0	0 0	0 0	1	0	1	0	Ö	0	1
351:	Ó	1	Ö	1	Ö	Ö	Ö	1	0	0	0	0	0
365:	0	0	2	0	0	0	0	0	0	1	0 0	0 0	3 1
379: 393:	0	0 1	1 0	0 1	0 0	0 2	0 1	0 0	1 0	0 1	3	3	1
393: 407:	1 0	2	3	1	3	4	5	3	3	3	10	6	6
421:	4	0	2	5	8	6	13	8	14	12	19	17	11 0
435:	12	12	15 0	7 1	16 0	3 1	2 0	0 0	1 1	1 0	0 0	0 1	1
449: 463:	0 1	0 1	1	0	Ö	Ó	1	1	2	Ö	2	1	1
477:	5	2	0	0	5	11	1	7	5	3	7	5	7
491:	5	6	5	3	8	7 1	3 2	4 1	2 1	3 2	1 0	1 3	2 2
505: 519:	3 2	3 4	2 2	8 1	2	2	4	1	3	1	2	Ō	0
533:	1	1	3	i	2	3	1	1	1	0	0	1	0
547:	0	1	2	1	1	2	1	1 3	1 0	2 0	2 0	2 0	1 0
561: 575:	0 0	1 1	0 0	1 0	0 0	1 0	0 0	0	0	Ö	1	ő	Ö
589:	Ô	Ö	Ö	0	ő	ŏ	Ĭ	0	0	1	0	0	0
603:	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0
617: 631:	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	Ö	ĭ
645:	Ó	0	Ŏ	ŏ	1	Ö	Ŏ	0	1	1	2	0	0
659:	0	0	0	1	0	0	0	0	0	3 3	0 2	2 0	1 0
673: 687:	1	2 0	2 0	5 0	0	2 0	0	5 0	4 0	0	0	0	Ö
701:	0	0	1	Ö	Ö	Ö	Ŏ	Ŏ	0	0	0	0	0
715:	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0
729: 743:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	Ŏ
757:	ő	Ô	ŏ	1	Ö	Ö	ŏ	1	1	2	0	0	0
771:	0	1	0	0	0	0	0	0	1	0	0 0	0 0	0 0
785: 799:	0 0	0 0	0 0	0	0 1	1 0	0 0	1 1	0 0	0 1	0	0	Ö
813:	1	1	ő	Ö	ö	Ö	ŏ	Ö	0	0	0	0	0
827:	0	0	0	0	0	1	0	0	0	0	0	0	0 0
841:	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 1	0
855: 869:	0 1	0	0	0	0	0	0	0	Ö	Ö	Ö	0	0
883:	Ò	0	0	0	0	0	1	0	0	0	1	0	0
897:	0	0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0
911: 925:	0 0	0 0	0 0	0	0	0	0	0	Ö	0	0	0	0
939:	Ö	0	0	0	Ō	0	0	0	0	0	0	0	0
953:	0	0	0	0	0	1	0	1 0	0 0	1 0	0 0	0 0	0 1
967: 981:	0 0	0 0	1 0	0 1	0 0	0 0	0 0	0	1	0	0	Ö	Ó
995:	0	0	0	0	0	0	0	0	0	0	0	0	0
1009:	0	0	0	0	0	0	0	0	0	0	0	0	0
1023:	0	0											979

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:41:30.01

Detector ID: 17 Acquisition Start: 2-SEP-2005 08:50:04.01

Live Time: 0 02:50:08.00 Real Time: 0 02:50:08.00

Batch Id: 0508094A-TH Sample Id: 16

Sample Type: TH

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	3971.32 4663.67 4903.47 5392.42 5844.92	61 289 236 47 14	0 0	71.66 86.86 46.64	198.79 424.46 504.04 668.72 824.14	346 445 587	100 126 102	5.98E-03 2.83E-02 2.31E-02 4.60E-03 1.37E-03	5.9 6.5 14.6	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:41:32.71

Acquisition Start: 26-AUG-2005 12:00:52.01

Live Time: 0 16:40:01.00 Real Time: 0 16:40:01.00

Pk	It	Energy	Area	Bkgnd FW	HM Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	3950.21	6	0248.	05 192.00	144	97	1.00E-04	40.8	
2	0	4575.85	4	0209.	89 395.50	346	100	6.67E-05	50.0	
3	0	4913.83	4	0190.	81 507.50	445	126	6.67E-05	50.0	
4	0	5300.46	11	0 63.	60 637.50	587	102	1.83E-04	30.2	
5	0	5876.21	7	0365.	72 835.00	774	123	1.17E-04	37.8	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:41:33.03

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 3 4	0 0 0	3971.32* 4663.67* 4903.47* 5392.42* 5844.92*	60 288 235 45 13	0 0 0	71.66 86.86 46.64	198.79 424.46 504.04 668.72 824.14	346 445 587	100 126 102	5.88E-03 2.82E-02 2.31E-02 4.42E-03 1.25E-03	5.9 6.5 15.2	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:41:33

Configuration : MCA0: [AMSCOUNT] 00009067\$1 : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

: VPSCR081705SL13 Sample title

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:50:04 Sample date

Sample quantity : 1.0382 gram Sample ID : 16

Sample geometry Sample type

Detector name : 017 Detector geometry:

Elapsed real time: 0 02:50:08.00 0.0% Elapsed live time: 0 02:50:08.00

Energy tolerance : 100.00 keV Half life ratio : 8.00 Systematic Error : 3.00 % Errors propagated: Yes

Efficiencies at : Peak Energy Efficiency type : Average value

Abundance limit : 75.00

It	Energy	Area FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0 0 0 0	3971.32* 4663.67* 4903.47* 5392.42* 5844.92*	60 47.68 288 71.66 235 86.86 45 46.64 13365.72	424.46 504.04	346 445 587	100 126 102	26.1 11.8 13.1 30.5 58.8		TH-232 TH-230 TH229 TH-228 TH-227	0.747 3.60 2.95 0.572 0.164

ALPHA SPECTROMETRY REPORT 2-SEP-2005 11:41:45

17 BATCH ID: 0508094A-TH SAMPLE ID: 1.077E+00 aram ALIQUOT: 17-AUG-2005 00:00 SAMPLE DATE: 018 DETECTOR NUMBER: SAMPLE TITLE: VPSCR081705SL14 19.39% AVERAGE EFFICIENCY: ACQ DATE: 2-SEP-2005 08:50 102.65% ELAPSED LIVE TIME: 10205. RECOVERY: 121.53 TRACER FWHM (kev): TRACER ID: TH-18A STANDARD ROI TYPE: 452. LAMBDA VALUE: 4.65 TRACER DPM AT SAMPLE DATE: 10.173 CONFIDENCE FACTOR:

TRACER DPM AT SAMPLE DATE: 10.173 * CONFIDENCE FACTOR: 4.65
SAMPLE MATRIX: SOIL * LLD CONSTANT: 2.71
ENERGY CAL DATE: 24-AUG-2005 09:58 * EFF CAL DATE: 24-AUG-2005 09:58

BKG FILENAME: B_018_26AUG05 * BKG ELAPSED TIME: 60009.

NUCLIDE ACTIVITY SUMMARY

NUCLIDE ENER	RGY NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram	
TH-227 5850	3.32	0.68	97.5	4.212E-02	5.191E-02	8.292E-02	
TH-228 5400	83.62	2.38	99.9	1.051E+00	2.871E-01	1.222E-01	
TH229 4872	342.66	0.34	99.5	4.253E+00	6.073E-01	6.730E-02	
TH-230 4672	356.66	0.34	99.8	4.414E+00	8.429E-01	6.709E-02	
TH-232 3997	7.0 82.00	0.00	100.0	1.013E+00	2.756E-01	3.348E-02	

*** Tracer FWHM > 80.0 Kev ***

4 ME

Analyst

Date

Reviewer

Date

6500 -2.07468E-04 3,46836E+03 3,19823E+00 6000 Offset: Slope Energy Quad Energy Energy DKA100;[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-TH\$17_TH.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 프 Time: Sample Type: Sample Time: Sample ID : 4500 2-SEP-2005 08:50: 0 02:50:05.00 0 02:50:05.00 VPSCR081705SL14 4000 018 Sample Title: Start Time: Real Time : Live Time Spectrum 3500 Title 20 squnoj

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113:	10205 0 0 0 0 0 0	10205 0 0 1 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 1 0 0 0 0	0 0 0 1 0 0	0 0 0 0 0 0	0 0 0 0 0	1 1 0 0 1 0 1	0 0 0 0 0 0 1 0	0 0 0 0 0 0
127: 141: 155: 169: 183: 197: 211: 225: 239:	1 0 3 0 0 0 0	1 0 0 2 0 0 0 0	0 0 1 2 0 1 0 0	0 1 7 6 0 0 0	0 0 3 1 0 0 0	0 1 1 1 0 0 0	0 0 4 2 0 0 0	1 1 4 2 1 0 0	0 2 1 4 0 0 0	0 0 0 0 1 0	1 1 4 0 0 0 0	0 0 5 0 0 0 0	0 5 2 0 0 0 0	1 1 3 0 0 0 0 0
253: 267: 281: 295: 309: 323: 337: 351: 365: 379:	0 0 0 0 1 1 3 3	0 0 0 0 0 0 1 2	1 0 0 1 0 1 1 1 4	1 0 1 0 0 0 0 3 8 8	0 1 0 0 0 1 0 2	1 0 0 0 0 0 0 2 3	0 0 1 0 0 0 1 2 8	0 0 0 0 0 2 2 4 4	0 1 0 0 0 0 0 2 3	0 0 1 0 0 0 2 11	0 0 0 1 2 0 1 13	0 0 1 0 0 1 2 3	0 0 0 1 0 2 2 2 4	0 1 0 0 3 1 2 7 24
393: 407: 421: 435: 449: 463: 477: 491: 505:	17 5 1 4 11 2 9 2	15 0 1 3 14 2 4 0	23 0 0 5 9 3 3 1 2	15 0 2 4 7 1 1 0	11 0 0 7 5 1 3 0	8 0 0 8 7 5 4 2	2 1 1 8 3 5 2 2	0 0 10 4 3 1 2	0 0 2 9 4 8 3 0 2	0 0 2 7 8 1 1 0	2 1 6 7 1 3 2 0 4	0 2 3 12 2 3 0 2	0 0 5 14 0 5 1 2	1 1 3 4 2 0 3 0
519: 533: 547: 561: 575: 589: 603: 617: 631:	4 1 0 0 0 1 0	2 0 0 0 1 2 0 3	0 0 0 0 0 2 2 3	1 0 0 0 0 2 0 3	2 0 1 0 1 2 0 1	0 0 0 0 0 1 0 8	1 0 0 0 0 0 0 1 3	1 0 0 0 0 0 1 9	0 0 1 0 1 2 0 4	0 0 0 0 0 1 1 5	0 0 0 0 0 4 2 2	0 0 0 0 0 0 1 2 1	0 0 0 0 0 2 3 1	0 1 0 0 0 1 2 0
645: 659: 673: 687: 701: 715: 729: 743: 757: 771:	0 0 0 0 0 0 0	0 0 0 0 1 0	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 1 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	1 0 0 0 0 1 0	0 1 0 1 1 0 0	0 0 0 1 2 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0
771; 785; 799; 813; 827; 841; 855; 869; 883;	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 1 0 0 0 0 0	0 0 0 0 1 0	0 0 0 0 0	000000000000000000000000000000000000000
911: 925: 939: 953: 967: 981: 995: 1009:	0 0 0 0 0 0	1 0 0 0 0 0 0	0 0 0 0 0 0	0 1 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	1 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0

Gross Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:41:39.26

Acquisition Start: 2-SEP-2005 08:50:31.01 Detector ID: 18

Real Time: 0 02:50:05.00

Live Time: 0 02:50:05.00 Batch Id: 0508094A-TH Sample Id: 17 Batch Id:

Sample Type: TH

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	3975.07	82	0	78.08	160.10	104	97	8.04E-03	11.0	
2	0	4658.01	357	0	69.96	381.41	305	99	3.50E-02	5.3	
3	0	4895.77	343	01	21.53	460.04	404	125	3.36E-02	5.4	
4	0	5381.19	86	0	14.92	623.29	545	103	8.43E-03	10.8	
5	0	5914.22	4	0	3.20	807.00	733	123	3.92E-04	50.0	

Background Counts Within Peak Regions Generated: 2-SEP-2005 11:41:42.14

Acquisition Start: 26-AUG-2005 12:00:55.01

Real Time: 0 16:40:09.00 Live Time: 0 16:40:09.00

Pk I	t	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	3949.70	0	0	0.00	152.00	104	97	0.00E+00	0.0	
2	0	4574.54	2	01	43.92	354.00	305	99	3.33E-05	70.7	
3	0	4913.68	2	03	29.42	466.00	404	125	3.33E-05	70.7	
4	0	5300.81	14	0	20.69	596.00	545	103	2.33E-04	26.7	
5	0	5876.96	4	0	0.00	794.00	733	123	6.67E-05	50.0	

Net Sample Counts Within Peak Regions Generated: 2-SEP-2005 11:41:42.42

Pk It	Energy	Area	Bkgnd FWHM	I Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0 3 0 4 0	3975.07* 4658.01* 4895.77* 5381.19* 5914.22*	82 357 343 84 3	0 69.96 0121.53 0 14.92	160.10 381.41 460.04 623.29 807.00	305 404 545	99 125 103	8.04E-03 3.49E-02 3.36E-02 8.19E-03 3.25E-04	5.3 5.4 11.1	

VMS Nuclide Identification Report V3.0 Generated 2-SEP-2005 11:41:43

Configuration : MCA0: [AMSCOUNT] 00009067\$1

: ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Analyses by

Sample title : VPSCR081705SL14

: 17-AUG-2005 00:00:00 Acquisition date : 2-SEP-2005 08:50:31 Sample date

Sample quantity : 1.0774 gram : 17 Sample ID

Sample type : TH Sample geometry :

Detector name : 018 Detector geometry:

0.0% Elapsed real time: 0 02:50:05.00 Elapsed live time: 0 02:50:05.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV Errors propagated: Yes Systematic Error : 3.00 % Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

It	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0	3975.07*	82 7	78.08	160.10	104	97	22.1		TH-232	1.04
0	4658.01*	357 6	59.96	381.41	305	99	10.6		TH-230	4.53
0	4895.77*	34312	21.53	460.04	404	125	10.8		TH229	4.37
0	5381.19*	84 1	L4.92	623.29	545	103	22.2		TH-228	1.08
0	5914.22*	3	3.20	807.00	733	1231	L22.2		TH-227	4.323E-02

SECTION X ANALYTICAL DATA (RADIUM-226)

05-08094 Ra226 Run 1

Printed: 8/29/2005 6:44 AM Page 1 of 3

Work Order	05-08094	Internal Fraction	Sample Desc	Client ID	Login CPM	Sample Date	Sample Aliquot
Analysis Code	Ra226	01	rcs	SOT		08/22/05 00:00	1.0000E+00
Run	7	02	MBL	BLANK		08/22/05 00:00	1.0000E+00
Date Received	8/19/2005	03	DUP	VPSCR081705SL01	42	08/17/05 10:02	1.0645E+00
Lab Deadline	9/9/2005	04	0	VPSCR081705SL01	42	08/17/05 10:02	1.0640E+00
Client	Missouri Dept. of Natural Resources	05	TRG	VPSCR081705SL02	35	08/17/05 10:04	1.0686E+00
Project	B3Z02092	90	TRG	VPSCR081705SL03	45	08/17/05 10:08	1.0256E+00
Report Level	4	07	TRG	VPSCR081705SL04	38	08/17/05 10:09	1.0143E+00
Activity Units	pCi	80	TRG	VPSCR081705SL05	41	08/17/05 10:11	1.1710E+00
Aliquot Units	57	60	TRG	VPSCR081705SL06	38	08/17/05 10:18	1.0096E+00
Matrix	SO	10	TRG	VPSCR081705SL07	41	08/17/05 10:20	1.0288E+00
Method	EPA 903.0 Modified	11	TRG	VPSCR081705SL08	47	08/17/05 10:21	9.9500E-01
Instrument Type	Alpha Spectroscopy	12	TRG	VPSCR081705SL09	37	08/17/05 10:23	1.0365E+00
Radiometric Tracer	Ba-133	13	TRG	VPSCR081705SL10	30	08/17/05 10:25	1.0068E+00
Radiometric Sol#	Ba-6a	4	TRG	VPSCR081705SL11	42	08/17/05 10:27	1.0743E+00
Tracer Act (dpm/g)	1675.937	15	TRG	VPSCR081705SL12	37	08/17/05 10:30	1.0861E+00
Carrier		16	TRG	VPSCR081705SL13	46	08/17/05 10:32	1.0040E+00
Carrier Conc (mg/ml)		17	TRG	VPSCR081705SL14	41	08/17/05 10:44	1.0550E+00

05-08094 Ra226 Run 1

Printed: 8/29/2005 6:44 AM Page 2 of 3

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 SAF 2* 2.12 2.16 2.16 2.08 2.08 2.00 2.00 2.20 2.27 2.37 2.27 2.34 2.34 1.81 2.31 1.91 1.81 SAF 1* 90.43 00.00 100.00 93.50 92.77 79.44 86.50 83.77 89.63 85.76 98.29 98.18 73.97 90.24 88.02 77.96 96.41 Mean % Rec Grav % Rec 0.0063 0.0066 0.0056 0900.0 0.0058 0.0052 0.0056 0.0063 0.0060 0.0064 0.0054 0.0052 0.0065 0.0065 0.00590.0061 0.0058 Grav Filter Net (g) 0.0299 0.0296 0.0292 0.0295 0.0293 0.0298 0.0300 0.0300 0.0297 0.0297 0.0301 0.0296 0.0300 0.0291 0.0294 0.0302 0.0300 Grav Filter Final (g) 0.0236 0.0236 0.0235 0.0236 0.0239 0.0240 0.0239 0.0235 0.0239 0.0243 0.0239 0.0234 0.0237 0.0237 0.0241 0.0237 0.0236 Grav Filter Tare (g) Grav Carrier Added (ml) 100.26 100.74 90.43 79.44 86.50 83.77 89.63 85.76 98.29 98.18 90.24 88.02 77.96 Radiometric 93.50 92.77 73.97 96.41 % Rec 445.0 459.6 459.5 426.9 421.2 395.4 381.0 389.6 445.2 447.9 334.9 409.0 401.5 409.6 354.2 361.7 409.1 Radiometric Tracer (pCi) 1017.6 1010.8 1014.8 1013.3 1008.6 1005.6 1012.8 1006.2 1012.6 1005.6 1008.6 1012.6 1013.6 1007.9 1009.8 1024.7 1005.1 Tracer Total ACT (dpm) 0.6072 0.60550.6025 0.6046 0.6004 0.6114 0.6042 0.6048 0.6014 0.6031 0.6018 0.6000 0.6043 0.5997 0.6042 0.6000 0.6018 Tracer Aliquot (g) Sample Desc TRG TRG TRG TRG TRG TRG TRG TRG TRG DUP TRG TRG TRG TRG **LCS** 00 MB Internal Fraction 15 16 9 9 13 4 17 03 9 90 80 8 12 5 9 07

Internal Fraction	Sample Desc	Rough Prep Date	Rough Prep By	Prep Date	Prep By	Sep t0 Date/Time	Sep t0 By	Sep t1 Date/Time	Sep t1 By
10	rcs			08/23/05 11:31	JBARNARD				
02	MBL			08/23/05 11:31	JBARNARD				
03	DUP			08/23/05 11:31	JBARNARD				
90	00	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD				
90	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD		-		
90	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD				
07	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD				
80	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD				
60	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD				
10	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD		·		
1	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD				
12	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD				
13	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD				
14	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD		-		
15	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD				
16	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD				
17	TRG	08/22/05 09:47	KSALLINGS	08/23/05 11:31	JBARNARD				

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-Ra226-1

Printed: 8/29/2005 9:48 AM Page 1 of 3

Blank Flag		Ş																		
MDA Flag	ş	Ą	ş	Ş	ş	Ş	Ş	ş	Ş	S S	ş	Ą	Ą	Ş	Ş	ş	ş			
RPD Flag			Ş																	
LCS Flag	Ą																			
LCS %R	98.04																			
LCS Known	1.03E+01		The state of the s																	
MDA	2.10E-01	1.60E-01	7.58E-02	1.99E-01	1.38E-01	1.78E-01	2.12E-01	1.65E-01	1.52E-01	1.67E-01	6.45E-02	1.15E-01	2.01E-01	1.74E-01	1.45E-01	1.80E-01	2.89E-01			
Error Estimate	1.34E+00	5.93E-02	3.38E-01	3.88E-01	3.56E-01	4.35E-01	3.42E-01	3.95E-01	4.58E-01	4.23E-01	2.96E-01	3.63E-01	3.92E-01	3.53E-01	3.12E-01	3.86E-01	5.15E-01			
Results	1.01E+01	2.52E-02	9.79E-01	1.18E+00	1.01E+00	1.37E+00	8.65E-01	1.22E+00	1.73E+00	1.38E+00	8.81E-01	1.24E+00	1.19E+00	1.11E+00	9.57E-01	1.19E+00	1.85E+00	T T		
Activity Units	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCI/g	pCi/g	pCi/g			
Clent Identification	SJT	BLANK	VPSCR081705SL01	VPSCR081705SL01	VPSCR081705SL02	VPSCR081705SL03	VPSCR081705SL04	VPSCR081705SL05	VPSCR081705SL06	VPSCR081705SL07	VPSCR081705SL08	VPSCR081705SL09	VPSCR081705SL10	VPSCR081705SL11	VPSCR081705SL12	VPSCR081705SL13	VPSCR081705SL14			
Sample Desc	SOI	MBL	DUP	8	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG			
Nuclide	RA-226	RA-226	RA-226	RA-226	RA-226	RA-226	RA-226	RA-226	RA-226	RA-226	RA-226	RA-226	RA-226	RA-226	RA-226	RA-226	RA-226			
Lab Fraction	01	02	03	04	05	90	07	80	60	10	11	12	13	14	15	16	17			
9 6	10			Ç	556	, _E /		t	6 0	80	-9()	səo	sonı	al Re	ınşeN	t. of l	Dep	µnos	siM
	7 	uı	าษ	ə	pog s	isylsn	A)rder	Work C	SOJIA	ine Seil	Epen				ţuə	ello.			

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-Ra226-1

Printed: 8/29/2005 9:48 AM Page 2 of 3

08/17/05 10:02 1.06E+00 93.50 08/17/05 10:04 1.07E+00 92.77 08/17/05 10:08 1.03E+00 79.44 08/17/05 10:09 1.01E+00 86.50 08/17/05 10:11 1.17E+00 89.63 08/17/05 10:20 1.03E+00 85.76 08/17/05 10:21 9.95E-01 98.29 08/17/05 10:23 1.04E+00 98.18 08/17/05 10:25 1.01E+00 90.24 08/17/05 10:37 1.09E+00 88.02	93.50 93.50 92.77 92.77 79.44 79.44 86.50 86.50 83.77 83.77 89.63 89.63 98.18 98.29 73.97 73.97 90.24 90.24 90.43 90.43	
		89.63 85.76 98.29 73.97 88.02

†6080-90

Eberline Services Work Order

Ra226

Analysis Code

uny

Missouri Dept. of Natural Resources

Client

Preliminary Data Report & Analytical Calculations Work Order: 05-08094-Ra226-1

Printed: 8/29/2005 9:48 AM Page 3 of 3

Sample Desc
08/27/05 08:49
08/27/05 08:49
08/27/05 08:49
08/27/05 08:50
08/27/05 08:50
08/27/05 08:50
08/27/05 08:51
08/27/05 08:51
08/27/05 08:51
08/27/05 08:52
08/27/05 08:52
08/27/05 08:52
08/27/05 08:53
08/27/05 08:53
08/27/05 08:53
08/27/05 08:53
08/27/05 08:54

†6080**-**90

Eberline Services Work Order

Ra226

Analysis Code

Missouri Dept. of Natural Resources

Client

05-08094-Ra226-1 (pCi/g) in SO Tracer ID: Ba-6a

Count Room Report Client: Missouri Dept. of Natural

Internal Fraction	Sample Desc	Client ID	Sample Date	Sample Aliquot	Tracer Aliquot (g)	Tracer ACT (dpm)	Radiometric Tracer (pCi)	Radiometric % Rec	SAF 1*	SAF 2*
10	SOT	SOT	08/22/05 00:00	1.0000	0.6114	1024.6679	445.0000	96.41	2.27	1.00
02	MBL	BLANK	08/22/05 00:00	1.0000	0.6072	1017.6289	459.6000	100.26	2.37	1.00
03	DUP	VPSCR081705SL01	08/17/05 10:02	1.0645	0.6042	1012.6011	459.5000	100.74	2.27	1.00
04	8	VPSCR081705SL01	08/17/05 10:02	1.0640	0.6048	1013.6067	426.9000	93.50	2.34	1.00
05	TRG	VPSCR081705SL02	08/17/05 10:04	1.0686	0.6014	1007.9085	421.2000	92.77	2.34	1.00
90	TRG	VPSCR081705SL03	08/17/05 10:08	1.0256	0.6031	1010.7576	361.7000	79.44	2.12	1.00
07	TRG	VPSCR081705SL04	08/17/05 10:09	1.0143	0.6055	1014.7799	395.4000	86.50	2.16	1.00
80	TRG	VPSCR081705SL05	08/17/05 10:11	1.1710	0.6025	1009.7520	381.0000	83.77	2.31	1.00
60	TRG	VPSCR081705SL06	08/17/05 10:18	1.0096	0.6046	1013.2715	409.1000	89.63	2.00	1.00
10	TRG	VPSCR081705SL07	08/17/05 10:20	1.0288	0.6018	1008.5789	389.6000	85.76	2.16	1.00
7	TRG	VPSCR081705SL08	08/17/05 10:21	0.9950	0.6000	1005.5622	445.2000	98.29	1.91	1.00
12	TRG	VPSCR081705SL09	08/17/05 10:23	1.0365	0.6043	1012.7687	447.9000	98.18	2.08	1.00
13	TRG	VPSCR081705SL10	08/17/05 10:25	1.0068	0.5997	1005.0594	334.9000	73.97	1.81	1.00
14	TRG	VPSCR081705SL11	08/17/05 10:27	1.0743	0.6004	1006.2326	409.0000	90.24	2.00	1.00
15	TRG	VPSCR081705SL12	08/17/05 10:30	1.0861	0.6042	1012.6011	401.5000	88.02	1.81	1.00
16	TRG	VPSCR081705SL13	08/17/05 10:32	1.0040	0.6000	1005.5622	409.6000	90.43	2.20	1.00
17	TRG	VPSCR081705SL14	08/17/05 10:44	1.0550	0.6018	1008.5789	354.2000	77.96	2.08	1.00
										•

Spike and Tracer Worksheet

Page 1 of 1 Printed: 8/23/2005 11:31 AM

nitials			Error Estimate	0.000																						
Witness Initials		MSD	Added pCi	0.00									rri Si													
n Initials	Saract	30	Error Estimate	0.000			SOT					Î					Matrix Spike									
Technician Initials	A	CSD	Known pCi	0.00		S											Σ									
		MS	Error Estimate	0.000		Balance Printer Tapes	-																			
ician	VARD	Σ	Added pCi	00.0		nce Prin																				
Technician	JBARNARD	S	Error Estimate	0.473		Bala						्र (क्र	77 63 50	10 1: 10 (3) 3) (3)		n n		m 12 1 13 1	UN 1 - 7 5 5 5 7 7 7 7 7		999	00 50 50 50				
		SOT	Known pCi	10.28		233 233 233 233	Tracer		Co i	T C	i	\$	\$		S S	5	\$	Ţ.	p q S G		-8.6398	S T				
te	5 11:23	MSD	Volume Used (g)																							
Date	8/23/2005 11:23	CSD	Volume Used (g)		30 C		<u>-</u>															-	-			
: Code	26	MS	Volume Used (g)				Approx Addition	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000		
Analysis Code	Ra226	SOT	Volume Used (g)	0.5162			Volume Used (g)	0.6114	0.6072	0.6042	0.6048	0.6014	0.6031	0.6055	0.6025	0.6046	0.6018	0.6000	0.6043	0.5997	0.6004	0.6042	0.6000	0.6018		
Run	7		Approx Addition	0.500			Solution Date	8/23/2005	8/23/2005	8/23/2005	8/23/2005	8/23/2005	8/23/2005	8/23/2005	8/23/2005	8/23/2005	8/23/2005	8/23/2005	8/23/2005	8/23/2005	8/23/2005	8/23/2005	8/23/2005	8/23/2005		
		kes	Solution Date	8/23/2005		Tracers	Activity dpm/g	1675.937	1675.937	1675.937	1675.937	1675.937	1675.937	1675.937	1675.937	1675.937	1675.937	1675.937	1675.937	1675.937	1675.937	1675.937	1675.937	1675.937		
rk Order	094	LCS & Matrix Spikes	Activity dpm/g	44.218			Sol#	Ba-6a	Ba-6a	Ba-6a	Ba-6a	Ba-6a	Ва-ба	Ва-ба	Ba-6a	Ва-ба	Ba-6a	Ba-6a	Ba-6a	Ba-6a	Ba-6a	Ba-6a	Ba-6a	Ba-6a		
Internal Work Order	05-08094	TCS &	# loS	Ra-5b			Isotope	Ba-133	Ba-133	Ba-133	Ba-133	Ba-133	Ba-133	Ba-133	Ba-133	Ba-133	Ba-133	Ba-133	Ba-133	Ba-133	Ba-133	Ba-133	Ba-133	Ba-133		
			Isotope	Ra-226			fraction	2	02	03	90	05	90	07	80	60	10	7	12	13	14	15	16	17		

Aliquot Worksheet

Eberline Services - Oak Ridge Version 2.0 8/1999

Printed: 8/23/2005 12:09 PM Page 1 of 1

Work Order	Run	Analysis Code	Rpt Units	Lab Deadline	Technician
05-08094	7-	Ra226	grams	9/9/2005	JBARNARD

Γ	Missouri Dept. of Natural Resources	Sample	Muffle Data	٥	ilution Data		Aliquot Data	t Data	MS Aliq	MS Aliquot Data	H-3 Soli	H-3 Solids Only
Lab			Ratio							5.5	Water Added	H3 Dist
Fraction	Client ID	Type	Post/Pre	No of Dils	Dil Factor	Ratio	Aliquot	Net Equiv	Aliquot	Net Equiv	(m)	Aliq
٤	SOT	S					1.0000E+00	1.0000E+00				
3	BLANK	MBL					1.0000E+00	1.0000E+00				
3 2	VPSCR081705SL01	DUP					1.0645E+00	1.0645E+00				
2	VPSCR081705SL01	2					1.0640E+00	1.0640E+00				
5 5	VPSCR081705SI 02	TRG					1.0686E+00	1.0686E+00				
90	VPSCR081705SI 03	TRG					1.0256E+00	1.0256E+00				
3 2	VPSCR081705SL04	TRG					1.0143E+00	1.0143E+00				
8	VPSCR081705SL05	TRG					1.1710E+00	1.1710E+00				
8 8	VPSCR081705SL06	TRG					1.0096E+00	1.0096E+00				
2	VPSCR081705SL07	TRG					1.0288E+00	1.0288E+00				
7	VPSCR081705SL08	TRG					9.9500E-01	9.9500E-01				1
: 2	VPSCR081705SL09	TRG					1.0365E+00	1.0365E+00				ı
1 5	VPSCR081705SL10	TRG					1.0068E+00	1.0068E+00			12 to	
14	VPSCR081705SL11	TRG					1.0743E+00	1.0743E+00				J.
25	VPSCR081705SL12	TRG				¥. [4]	1.0861E+00	1.0861E+00				gri
16	VPSCR081705SL13	TRG					1.0040E+00	1.0040E+00				rr un
17	VPSCR081705SL14	TRG					1.0550E+00	1.0550E+00				cr vo
												· č
									-			
												on Sa
											**************************************	(T) ND
											000	17 00
											2 H	n o
	Comments											ora Uje
											00 10 10 10 10 10 10 10 10 10 10 10 10 1	erzi.
											10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	or.
											1	

Technician:

Gravimetric Worksheet

Printed: 8/26/2005 1:23 PM Page 1 of 1

Work Order	Run	Analysis Code	Gravimetric Carrier	Carrier Conc (mg/ml)	Technician
05-08094	~	Ra226			DJOHNSON

Retec	TRetec Missouri Dept. of Natural Resources	Sample	Carrier Data		Filter Data		Gravimetric
		•	Carrier Added	Filter Tare	Filter Final	Filter Net	%
Fraction	Client ID	Type	(ml)	(6)	(a)	(g)	Recovery
10	SOT	SOT		0.0239	0.0302	0.0063	
02	BLANK	MBL		0.0234	0.0300	9900'0	
03	DUP	DUP		0.0237	0.0300	0.0063	
04	VPSCR081705SL01	8		0.0235	0.0300	0.0065	
05	VPSCR081705SL02	TRG		0.0236	0.0301	0.0065	
90	VPSCR081705SL03	TRG		0.0237	0.0296	0.0059	
07	VPSCR081705SL04	TRG		0.0239	0.0299	0900'0	
80	VPSCR081705SL05	TRG		0.0236	0.0300	0.0064	
60	VPSCR081705SL06	TRG		0.0235	0.0291	0.0056	
9	VPSCR081705SL07	TRG		0.0236	0.0296	0900'0	
7	VPSCR081705SL08	TRG		0.0243	0.0297	0.0054	
12	VPSCR081705SL09	TRG		0.0239	0.0297	0.0058	
13	VPSCR081705SL10	TRG		0.0240	0.0292	0.0052	
14	VPSCR081705SL11	TRG		0.0239	0.0295	0.0056	
15	VPSCR081705SL12	TRG		0.0241	0.0293	0.0052	
16	VPSCR081705SL13	TRG		0.0237	0.0298	0.0061	
17	VPSCR081705SL14	TRG		0.0236	0.0294	0.0058	

Z

Date: 8 ,24,05

Technician:

Eberline Services - Oak Ridge Prep Logbook Version 2.0 8/1999

Rough Sample Preparation Log Book

Printed: 8/22/2005 9:47 AM Page 1 of 1

Work Order	Lab Deadline	Date Received in Prep	Date Sealed	Date Returned	Technician
				ALCOHOL STATE OF THE STATE OF T	
05-08094	9/9/2005	8/21/2005	8/22/2005	8/23/2005	KSALLINGS

Eberline	Eberline Missouri Dept. of Natural Resources	Tare (g)	Gross (g)	(<u>6</u>)	Net (g)	(6	Percent	nt	Gamma	ıma	Special
Fraction	Client ID	Pan Wt	Wet Wt.	Dry Wt.	Wet Wt	Dry Wt.	Liquid	Solid	Dry Wt.	LEPS Wt.	Info
9	VPSC	14.0000	427.3600	359.7600	413.3600	345.7600	16.35%	%39'88			
05	VPSCR081705SL02	13.8700	408.6400	338.6500	394.7700	324.7800	17.73%	82.27%			
90	VPSCR081705SL03	13.7500	484.5800	425.7200	470.8300	411.9700	12.50%	87.50%			
07	VPSCR081705SL04	13.9900	464.1600	401.9900	450.1700	388.0000	13.81%	86.19%			
80	VPSCR081705SL05	13.9400	567.4800	495.5300	553.5400	481.5900	13.00%	%00'.28			
60	VPSCR081705SL06	13.9100	501.1000	396.9800	487.1900	383.0700	21.37%	78.63%			
9	VPSCR081705SL07	14.0200	471.6000	374.1500	457,5800	360.1300	21.30%	78.70%			
£	VPSCR081705SL08	14.0000	497.3700	396.4800	483.3700	382.4800	20.87%	79.13%			
12	VPSCR081705SL09	13.9700	501.9700	413.2200	488.0000	399.2500	18.19%	81.81%			
<u>ნ</u>	VPSCR081705SL10	14.0200	477.0700	345.6500	463.0500	331.6300	28.38%	71.62%			
14	VPSCR081705SL11	13.9500	511.8900	427.7900	497.9400	413.8400	16.89%	83.11%			
15	VPSCR081705SL12	13.8900	464.5200	384.1100	450.6300	370.2200	17.84%	82.16%			
16	VPSCR081705SL13	13.8500	461.6300	353.8000	447.7800	339.9500	24.08%	75.92%			
17	VPSCR081705SL14	13.9500	458.1300	364.2400	444.1800	350.2900	21.14%	78.86%			

	H: Hot, O: Organic Hazard, P: PCB Hazard, R: Rush, T: Other (see comments)
Comments	Special Codes

Technician: Kenny Solling

Date: Analysis: Rough Prep Logbook

Analysis: Ra226 Page No. 5086

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:43:21

******************************* Spectral File: ND AMS ARCHIVE C:C 0508094A-RA\$01 RA.CNF ****************************** 01 0508094A-RA SAMPLE ID: BATCH ID: 1.000E+00 gram ALIQUOT: 27-AUG-2005 00:00 SAMPLE DATE: 032 DETECTOR NUMBER: SAMPLE TITLE: SPIKE 19.42% AVERAGE EFFICIENCY: ACQ DATE: 27-AUG-2005 08:49 96.41% 10203. RECOVERY: ELAPSED LIVE TIME: 0.00 TRACER FWHM (kev): NONE TRACER ID: STANDARD ROI TYPE: LAMBDA VALUE: 0. 4.65 TRACER DPM AT SAMPLE DATE: 0.000 CONFIDENCE FACTOR: 2.71 LLD CONSTANT: SAMPLE MATRIX: SOIL 24-AUG-2005 09:59 ENERGY CAL DATE: 24-AUG-2005 09:59 EFF CAL DATE: BKG ELAPSED TIME: 60001. BKG FILENAME: B 032 26AUG05 2.27 SAF: ************************* NUCLIDE ACTIVITY SUMMARY MDC TPU/ERROR NUCLIDE ENERGY NET BKG %ABN ACTIVITY gram AREA pCi/ gram 2-SIGMA pCi/ 4.528E-01 2.501E-01 1.493E+00 100.0 6003.0 105.50 1.19 PO-218 2.615E-01 6.461E-01 RN-222 5490.0 205.21 1.36 99.9 2.906E+00 1.338E+00 2.102E-01 1.008E+01 RA-226 4785.0 712.10 0.68 100.0

Analyst

Parri awar

8-2905

8/29/05

Date

6500 -1.88450E-04 3,47349E+03 3.14876E+00 6000 Offset: Slope Quad Energy (Energy (Energy (DKA100:[ALPHA.ALUSR.ARCHIVE.C]C_0508094A-RA\$01_RA.CNF;2 5500 27-AUG-2005 00:00 Energy (keV) 2000 01 RA Type: Time: Sample Sample Sample 4500 27-AUG-2005 08:49 0 02:50:03.00 0 02:50:03.00 4000 032 SPIKE Sample Title: Start Time: Real Time Time Spectrum 3500 Title Live N ω ø etnuol 4

1: 10203 10203 1 1 1 1 0 0 0 3 1 2 0 0 1 1 55: 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1
435: 0 3 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:43:08.97

Detector ID: 32 Acquisition Start: 27-AUG-2005 08:49:15.01

Live Time: 0 02:50:03.00 Real Time: 0 02:50:03.00

Batch Id: 0508094A-RA Sample Id: 01

Sample Type: RA

Pk	It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4601.46	314	0380.02	366.25			3.08E-02		
2	0	5264.66	91	0462.34	589.66	507	174	8.92E-03	10.5	
3	0	5767.56	47	0281.72	763.45	700	161	4.61E-03	14.6	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:43:19.18

Acquisition Start: 26-AUG-2005 12:01:30.01

Live Time: 0 16:40:01.00 Real Time: 0 16:40:01.00

Pk	It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4606.71	4	0443.97	368.00			6.67E-05		
2	0	5275.90	8	0469.16	593.50	507	174	1.33E-04	35.4	
3	0	5814.87	7	0368.40	780.00	700	161	1.17E-04	37.8	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:43:19.44

Pk It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0	4601.46* 5264.66* 5767.56*	712 205 105	0462.34		507	174	6.98E-02 2.01E-02 1.03E-02	10.6	

Flaq: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:43:20

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : SPIKE

Sample date : 27-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:49:15

Sample ID : 01 Sample quantity : 1.0000 gram

Sample type : RA Sample geometry :

Detector name : 032 Detector geometry:

Elapsed live time: 0 02:50:03.00 Elapsed real time: 0 02:50:03.00 0.0%

Energy tolerance: 100.00 keV Half life ratio: 8.00
Errors propagated: Yes Systematic Error: 3.00 %

Abundance limit : 75.00

It	Energy	Area FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0 0 0	4601.46* 5264.66* 5767.56*	712380.02 205462.34 105281.72	589.66	507	174	11.3 21.1 29.5		RA-226 RN-222 PO-218	9.71 2.80 1.44

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:43:32

Spectral File: ND AMS ARCHIVE_R:R_0508094A-RA\$02_RA.CNF

SAMPLE ID: 02 BATCH ID: 0508094A-RA 1.000E+00 gram ALIOUOT: SAMPLE DATE: 27-AUG-2005 00:00 033 DETECTOR NUMBER: SAMPLE TITLE: BLANK 21.31% 27-AUG-2005 08:49 AVERAGE EFFICIENCY: ACO DATE: 100.00% RECOVERY: 10200. ELAPSED LIVE TIME: 0.00 TRACER FWHM (kev): NONE TRACER ID: STANDARD ROI TYPE: LAMBDA VALUE: 0. CONFIDENCE FACTOR: 4.65 TRACER DPM AT SAMPLE DATE: 0.000 2.71 SOIL LLD CONSTANT: SAMPLE MATRIX: 25-AUG-2005 04:28 EFF CAL DATE: ENERGY CAL DATE: 25-AUG-2005 04:28 60000. BKG ELAPSED TIME: B 033 26AUG05 BKG FILENAME: 2.37 SAF:

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
PO-218	6003.0	6.60	0.51	100.0	8.208E-02	1.025E-01	1.778E-01
RN-222	5490.0	6.26	0.85	99.9	7.790E-02	1.027E-01	2.064E-01
RA-226	4785.0	2.03	0.34	100.0	2.524E-02	5.927E-02	1.598E-01

Reviewer

8/29/05

Date

-1.93467E-04 3.44527E+03 3.13024E+00 0009 Energy Offset: Energy Slope : Energy Quad DKA100: [ALPHA.ALUSR.ARCHIVE.R]R_0508094A-RA\$02_RA.CNF;2 5500 27-AUG-2005 00:00 Energy (keV) 5000 02 RA Sample Type: Time: Sample ID : Sample 4500 Start Time: 27-AUG-2005 08:49 Real Time: 0 02:50:00.40 Live Time: 0 02:50:00.00 4000 033 BLANK Sample Title: Spectrum 3500 Title eto0 0

Channel														
1:	0	0	0	0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0	0 0
15: 29:	0 0	0 0	0 0	0	0	0	Ó	0	Ö	0	0	0	0	0
43:	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0
57: 71:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0	Ö
85:	0	0	0	0	Ö	0	ŏ	Ö	Ŏ	Ŏ	Ö	Ō	0	0
99:	ĭ	Ŏ	Ŏ,	0	0	0	0	0	0	0	0	0	0	0
113:	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0
127: 141:	0 0	0	0 0	0 0	0 0	0 0	0	0	0	0	0	Ŏ	Ö	ŏ
155:	Ö	Ö	Ŏ	Ö	Õ	0	0	0	0	0	0	0	0	0
169:	0	0	0	0	0	0	0	0 0						
183: 197:	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0	0	Ö	0	ŏ	ő
211:	Ŏ	ŏ	Ö	ŏ	Ö	Ö	0	0	0	0	0	0	0	0
225:	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0
239: 253:	0 0	0 0	0 0	0 0	0	0	0 0	0 0	0	0	0	Ŏ	ŏ	ŏ
267:	Ö -	Ö	Õ	Ŏ	Ö	Ö	Ŏ	0	Ö	0	0	0	0	0
281:	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0
295: 309:	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0	0	0	Ö	ő
309: 323:	0	0	0	0	Ŏ	Ö	ŏ	Ŏ	Ö	0	0	0	0	0
337:	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0 0
351: 365:	0 0	0 0	0 0	0 0	0 1	0	0 0	0 0	0 0	0	0	0	0	ő
379:	0	0	0	Ö	ò	Ŏ	Ö	0	0	0	0	0	0	0
393:	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0
407: 421:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	ő
435:	Ö	0	Ö	ŏ	Ö	Ö	Ŏ	Ö	Ö	0	0	0	0	0
449:	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
463:	0	0 0	0	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0
477: 491:	0 0	0	0	0	.0	Ö	0	Ö	ŏ	Ŏ	Ö	Ŏ	0	0
505:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
519:	0	0	0	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
533: 547:	0 0	0 0	0 0	0	0	0	0	Ö	ŏ	ŏ	1	ŏ	0	0
561:	0	0	Ō	0	0	O	0	0	0	0	0	0	0	0
575:	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
589: 603:	0	0	0	0	0	0	0	Ö	ŏ	ŏ	Ŏ	Ö	0	0
617:	Ö	Ö	0	0	0	0	0	0	0	0	0	0	0	0 0
631:	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 N	0 0	1 0	0 0	0 0	. 0
645: 659:	0	0	0	0	0	Ö	Ö	Ö	Ŏ	Ŏ	Ŏ	Ō	0	0
673:	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0
687: 701:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0
715:	0	0	0	Ŏ	ŏ	Õ	Ö	Ŏ	ŏ	0	0	0	0	0
729:	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0 0	0 0
743: 757:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	Ö	Ö	0
771:	Ö	Ö	ő	Ŏ	ŏ	0	0	0	0	0	0	0	0	0
785:	0	0	0	0	0	0	1	0 0						
799: 813:	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0	0	Ö	Ŏ	Ö	0
827:	Ö	Ö	Õ	ŏ	Ö	0	0	0	0	0	0	0	0	0
841:	0	0	0	0	0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0
855: 869:	0 1	0 0	0 0	0 0	0 0	0	0	0	0	Ö	0	0	Ö	0
883:	ò	0	0	0	0	0	0	0	0	0	0	0	0	0
897:	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0	0 0	0 0
911: 925:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0
939:	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
953:	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
967: 981:	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0
995:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1009:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1023:	0	0											200	

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:43:27.11

Acquisition Start: 27-AUG-2005 08:49:33.01 Real Time: 0 02:50:00.40 Detector ID: 33

Live Time: 0 02:50:00.00

Sample Id: 02 0508094A-RA Batch Id:

Sample Type: RA

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
1	0	4573.98	1	0	3.13	369.00			9.80E-05100.0	
2	0	5177.31	3	037	2.50	573.67	520	176	2.94E-04 57.7	
3	0	5941.90	3	024	7.29	841.33	715	163	2.94E-04 57.7	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:43:30.77

Acquisition Start: 26-AUG-2005 12:01:33.01

Real Time: 0 16:40:00.20 Live Time: 0 16:40:00.00

Pk It	Energy	Area	Bkgnd FW	IHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0	4606.82 5275.49 5814.35	2 5 3	0363.	11	380.00 607.50 796.00	520	176	3.33E-05 8.33E-05 5.00E-05	44.7	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:43:31.04

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
		4573.98*	2			369.00			1.99E-04117.3	
2	0	5177.31*	6	03	72.50	573.67	520	176	6.14E-04 65.9	
3	0	5941.90*	7	02	47.29	841.33	715	163	6.47E-04 62.4	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:43:31

: MCA0: [AMSCOUNT] 00009067\$1 Configuration

: ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Analyses by

Sample title : BLANK

: 27-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:49:33 Sample date

Sample quantity : 1.0000 gram : 02 Sample ID

Sample geometry : RA Sample type

Detector geometry: Detector name : 033

0.0% Elapsed real time: 0 02:50:00.40 Elapsed live time: 0 02:50:00.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

It	Energy	Area FWHM Channel	Left Pw %Err	Fit Nuclides	Activity pCi/gram
0 0	4573.98* 5177.31* 5941.90*	2 3.13 369.00 6372.50 573.67 7247.29 841.33	520 176131.7	RA-226 RN-222 PO-218	2.524E-02 7.790E-02 8.208E-02

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:43:42

BATCH ID:	0508094A-RA	*	SAMPLE ID:	03
SAMPLE DATE:	17-AUG-2005 00:00	*	ALIQUOT: 1.064E+0	0 gram
SAMPLE TITLE:	VPSCR081705SL01	*	DETECTOR NUMBER:	034
ACQ DATE:	27-AUG-2005 08:49	*	AVERAGE EFFICIENCY:	20.21%
ELAPSED LIVE TIM	E: 10200.	*	RECOVERY:	100.00%
TRACER ID:	NONE	*	TRACER FWHM (kev):	0.00
LAMBDA VALUE:	0.	*	ROI TYPE:	STANDARD
TRACER DPM AT SA	MPLE DATE: 0.000	*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
	25-AUG-2005 04:28	*	EFF CAL DATE: 25-AUG-20	05 04:28
BKG FILENAME:	B 034 26AUG05	*	BKG ELAPSED TIME:	60000.
	- -	*	SAF:	2.27

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
PO-218	6003.0	51.87	0.34	100.0	6.391E-01	2.720E-01	1.516E-01
RN-222	5490.0	65.15	0.68	99.9	8.032E-01	3.067E-01	1.831E-01
RA-226	4785.0	79.45	0.00	100.0	9.787E-01	3.378E-01	7.578E-02

-1.48111E-04 3,44466E+03 3,08962E+00 6000 Offset: Slope Energy Quad Energy Energy DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA\$03_RA.CNF;2 5500 17-AUG-2005 00:00 Energy (keV) 5000 RA Sample ID : Sample Type: Time: Sample 4500 Start Time: 27-AUG-2005 08:49 Real Time: 0 02:50:00.50 Live Time: 0 02:50:00.00 Sample Title: VPSCR081705SL01 4000 Spectrum 3500 Title N ம 0 1.5 સ equnog

Channel														
1: 15:	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0 0	0 0	0 0
29:	. 0	0	0	0	0	0	Ö	Ö	Ö	Ö	Ŏ	0	0	0
43:	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0
57: 71:	0 0	0 0	0	0 0	0 0	1 0	0 0	0 0	0 0	0 0	1	0	0	0
85:	Ö	Ö	Ö	ŏ	Ŏ	1	0	0	0	0	0	0	0	0
99:	0	0	0	0	0	0	1 0	0 0	0 1	0 0	0 0	0	0 0	0 0
113: 127:	0 0	1 0	1 0	0	0 0	0 0	0	0	Ó	0	Ö	ŏ	ő	0
141:	0	0	0	1	Ō	Ö	0	1	0	0	0	0	0	0
155: 169:	0 0	0 2	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 1	0 0	0 0
183:	Ö	1	1	ŏ	ŏ	Ö	ò	0	0	0	0	0	1	0
197:	0	0	0	1 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 1	0 0
211: 225:	0 1	0 0	0 0	0	0	0	0	Ö	Ö	Ö	Ö	ĭ	2	0
239:	0	1	1	0	1	0	0	0	0	0	1	0	0 0	0 0
253: 267:	0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0	0
281:	Ö	Ö	1	ŏ	ő	1	0	1	1	2	0	1	0	0
295:	0	1	0	0	0	0 0	0	0 0	0 0	1 0	0 0	0 1	0 0	1 0
309: 323:	0 0	0 0	0 0	0 0	2 0	0	1	0	0	1	0	ö	1	ő
337:	0	1	0	0	0	1	0	0	0	1	0	0	0 0	1 0
351: 365:	0 0	0 0	1 1	0 0	0 0	0 0	2 0	0 0	0 0	0 0	0 0	0	0	0
379:	Ŏ	0	0	0	0	1	0	0	0	1	0	0	0	1
393:	1 0	0 0	0 0	0 1	1 0	1 1	0 0	0 0	0 0	1 0	0 0	2 0	0 0	0 0
407: 421:	0	0	0	Ó	2	ò	Ö	Ö	Ö	1	Ō	1	0	0
435:	0	1	1	1	0	0	0	0	0	0	0	0 0	0 0	0 0
449: 463:	0 0	2 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	ő
477:	1	ő	ő	0	Ō	0	0	0	0	0	1	0	0	0
491:	1	0	1 0	0 0	0	0 0	0 0	0 0	0 0	1 0	2 0	0 0	0 0	0 0
505: 519:	0 0	0 0	0	1	0	0	0	0	0	Ö	Ö	ő	0	0
533:	0	0	0	0	0	0	0	0	0	1	0	0 0	0 0	1 0
547: 561:	0 0	1 0	0 0	0 0	0 0	0 0	1 0	1 0	0 0	0 0	0 0	Ö	0	0
575:	0	0	0	1	0	0	0	0	0	0	1	0	0	0
589: 603:	0 0	1 0	1 0	0 0	1 0	1 0	· 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0
617:	1	Ö	Ŏ	Ö	ŏ	ő	1	0	0	1	0	Ö	0	0
631:	1	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 1
645: 659:	0 0	0 0	0 0	0 0	0	0 0	0	0	0 2	1 0	1	Ö	0	ò
673:	0	0	1	1	0	0	0	1	0	0	0	0	0	0 0
687: 701:	0 1	2 0	0 0	1 0	0 0	0 0	1 0	0 0	0 1	0 0	1 0	0 0	1 1	0
715:	0	1	Ô	Ô	0	0	1	0	2	1	0	0	0	0
729: 743:	0 0	1 0	0 0	0 1	0 0	0 0	1 0	0						
757:	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
771: 785:	0 0	0 1	0 0	0 0	0 0	0 0	0 1	1 0	0 0	0 0	0 0	0 1	0 0	0 0 0 0 0
799:	0	Ó	0	0	1	0	i	0	Ö	Ö	0	0	1	
813:	0	0	0	0	0	0	0	1	1	0	0	1 0	0	0
827: 841:	0 0	0 0	0 0	2 0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0 0 0 0 0
855:	0	1	0	0	0	0	0	0	0	0	0	0	0	0
869: 883:	0 0	0 2	0 0	0 1	1 0	0 0	0 1	0 1	0 0	0 0	0 0	0 1	0 0	0
897:	0	0	Ö	ó	0	Ö	0	0	0	0	0	0	0	Ō
911:	0	0	0	0	0	1	0	1 0	0	0 1	0 0	0 2	0 0	0 n
925: 939:	1 0	1 0	0 0	1 0	1 0	1 1	1 1	0	0 0	0	0	0	0	Ö
953:	0	0	0	0	1	0	0	0	0	0	0	0	0	0
967: 981:	0	0	0 0	0										
995:	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0 0 0 0
1009:	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1023:	0	0												

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:43:37.58

Detector ID: 34 Acquisition Start: 27-AUG-2005 08:49:52.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.50

Batch Id: 0508094A-RA Sample Id: 03

Sample Type: RA

Pk	It	Energy	Area	Bkgnd FWH	M Channel	Left	Pw	Cts/Sec	%Err	Fit
_	•	4603.03	35		7 381.91 7 627.03			3.43E-03 2.84E-03		
		5323.72 5795.13	29 23		7 627.03 3 790.74			2.25E-03		

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:43:41.10

Acquisition Start: 26-AUG-2005 12:01:36.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4606.26	0	0	0.00	383.00	306	155	0.00E+00	0.0	
2	0	5275.67	4	04	72.71	610.50	523	176	6.67E-05	50.0	
3	0	5814.43	2	0	52.52	797.50	717	162	3.33E-05	70.7	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:43:41.34

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	Ö	4603.03* 5323.72* 5795.13*	79 65 52	0 6	57.97	381.91 627.03 790.74	523	176	7.79E-03 6.39E-03 5.09E-03	18.8	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:43:42

Configuration : MCA0:[AMSCOUNT]00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

: VPSCR081705SL01 Sample title

: 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:49:52 Sample date

Sample quantity : 1.0645 gram Sample ID : 03

Sample geometry Sample type : RA

Detector name : 034 Detector geometry:

0.0% Elapsed real time: 0 02:50:00.50 Elapsed live time: 0 02:50:00.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV

Systematic Error : 3.00 % Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

It	Energy	Area FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
Ö	4603.03* 5323.72* 5795.13*	79426.37 65 67.97 52335.13	627.03	523	176	33.8 37.5 42.0		RA-226 RN-222 PO-218	0.979 0.803 0.639

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:43:52

Spectral File: ND AMS_ARCHIVE_S:S_0508094A-RA\$04_RA.CNF

04 SAMPLE ID: 0508094A-RA BATCH ID: 1.064E+00 gram ALIQUOT: SAMPLE DATE: 17-AUG-2005 00:00 035 DETECTOR NUMBER: SAMPLE TITLE: VPSCR081705SL01 20.51% AVERAGE EFFICIENCY: 27-AUG-2005 08:50 ACO DATE: 93.50% RECOVERY: ELAPSED LIVE TIME: 10200. TRACER FWHM (kev): 0.00 NONE TRACER ID: STANDARD ROI TYPE: LAMBDA VALUE: 0. CONFIDENCE FACTOR: 4.65 TRACER DPM AT SAMPLE DATE: 0.000 LLD CONSTANT: 2.71 SOIL SAMPLE MATRIX: 25-AUG-2005 04:28 EFF CAL DATE: ENERGY CAL DATE: 25-AUG-2005 04:28 60000. BKG ELAPSED TIME: BKG FILENAME: B 035 26AUG05 SAF: 2.34

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
PO-218	6003.0	57.99	0.51	100.0	7.532E-01	3.085E-01	1.833E-01
RN-222	5490.0	61.65	1.53	99.9	8.012E-01	3.212E-01	2.573E-01
RA-226	4785.0	90.58	0.68	100.0	1.176E+00	3.883E-01	1.989E-01

Analyst

Reviewer

Q. 250r

Date

Date

-1.80495E-04 3,42698E+03 3.10189E+00 6000 Offset: Energy Offset Energy Slope Energy Quad DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA\$04_RA.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 8 Sample Time: Sample ID : Sample Type: R 4500 Start Time: 27-AUG-2005 08:50 Real Time: 0 02:50:00.50 Live Time: 0 02:50:00.00 Title : 035 Sample Title: VPSCR081705SL01 4000 Spectrum 3500 N <u>س</u> 1.5 0 etnuoj

Channel														
1:	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0
15: 29:	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 1	0	0	0	0	Ö
43:	ŏ	ŏ	Ŏ	ö	Ö	1	Ö	0	0	0	0	0	0	0
57:	0	0	0	0	0	0	0	0	0	0	0	0	0	1
71:	0	1	0	0	0 0	0 0	0 0	0 0	0	0 0	1 0	0 0	1 0	0 0
85: 99:	0 0	0 0	0 1	0 0	0	0	0	0	0	1	Ö	Ö	Ö	Ö
113:	Ö	Ö	1	Ö	1	ŏ	Ŏ	ō	Ŏ	Ó	Ö	0	0	0
127:	0	0	0	0	0	1	0	0	0	0	0	0	0	. 0
141:	0	0	0	0 0	0	0 0								
155: 169:	0 0	0 0	0	0	1	0	0	0	0	Ö	Ŏ	ŏ	Ŏ	ŏ
183:	Ö	ŏ	Ö	1	Ö	0	0	0	0	0	0	1	1	0
197:	0	0	0	1	0	0	0	0	0	0 0	0 0	0 0	0 0	0
211: 225:	0 2	0 0	0 0	0	0 0	0 0	0 0	0 0	1 0	0	0	0	Ö	Ö
239:	Ō	Ö	Ŏ	Ö	Ö	1	ŏ	Ŏ	ĭ	Ö	1	0	0	0
253:	0	1	0	0	0	0	1	0	0	0	0	1	0	0 1
267: 281:	0 0	1 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	1 0	0 0	Ó
295:	0	0	0	0	0	0	ò	1	ŏ	ŏ	Ö	Ŏ	Ŏ	Ö
309:	Ō	Ō	Ō	0	0	1	0	0	1	0	0	0	0	1
323:	1	0	1	0	0	0	1 0	1 0	0 0	0 1	0 0	0 0	0 0	0 0
337: 351:	0 0	0 0	0 0	0 0	0	0 0	0	0	0	Ó	0	Ö	1	ĭ
365:	ŏ	ŏ	Ö	Ŏ	1	0	Ō	0	1	0	0	1	1	0
379:	0	0	0	0	2	0	0 1	0 0	0 0	0 0	0 1	0 0	0 1	0 1
393: 407:	0 0	1 2	0 2	0 0	1 0	0 0	Ó	1	1	0	Ó	Ö	ó	i
421:	ŏ	ō	Ō	ŏ	Ö	Ŏ	Ö	1	1	1	1	0	0	0
435:	0	0	0	0	1	0	0	1	1	0	0 0	0 0	0 0	0 0
449: 463:	0 0	0 0	0 0	0 0	1 0	0 0	1 0	1 0	0 0	0 0	0	0	0	Ö
477:	Ö	Ö	Ŏ	Ö	Ö	ŏ	Ö	Ö	ŏ	Ö	Ö	1	0	0
491:	0	0	0	0	1	1	0	1	0	0	0	0	0	0
505: 519:	0 0	0 0	0 1	0 0	0 0	0 0	1 0	0 0	1 0	0 0	0 0	0 0	0 0	0 1
533:	0	0	1	0	1	0	0	ő	Ö	ŏ	Ö	ŏ	1	ò
547:	0	0	0	0	1	0	0	0	0	0	0	1	0	0
561: 575:	1 0	1 0	0 0	0 0	0 0	0 0	1 1	0 0	0 0	0 0	0 0	0 0	0 1	0 0
589:	0	0	0	0	0	0	Ó	Ö	Ö	Ö	Ö	ŏ	i	Ö
603:	0	0	0	0	0	0	0	1	0	0	0	0	0	0
617:	0 0	0 0	0 1	0 0	0 1	0 0	0 0	0 0	0 0	0	0 0	1 0	0 0	0 0
631: 645:	1	0	Ó	0	0.	0	0	0	Ŏ	Ö	ŏ	ŏ	ŏ	ŏ
659:	0	1	1	0	0	0	0	0	0	0	0	0	1	0
673: 687:	0 0	0	0 0	0 0	0 0	0 0	0 0	1 0	0 1	0 0	2 0	0 0	0 1	0 2
701:	0	0	0	0	0	0	0	Ö	Ó	Ö	ŏ	Ö	ò	0
715:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
729: 743:	0 0	0 0	0 1	0 0	0	0 0	1 0	0 1	0 0	0 0	1 0	0 0	0 0	0 0
743: 757:	0	0	Ó	0	1	0	1	i	Ö	Õ	ĭ	ŏ	Ŏ	0
771:	1	0	0	0	0	0	0	0	0	0	0	0	1	0
785: 799:	0 0	1 0	0 1	0	0 0	0 0	0 0	0 0	1 0	1 0	0 0	0 0	0 0	0 0
799: 813:	1	0	Ó	1	0	0	1	1	0	0	Ö	Õ	1	ő
827:	0	0	0	0	0	0	0	0	0	1	0	1	0	0
841: 855:	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 1	0 0
869:	0	1 0	0	0	0	0	0	0	0	1	Ö	Ö	ö	ő
883:	0	1	0	0	0	0	0	0	0	0	0	0	0	0
897:	0	0	0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	1 0	0 1	0 0
911: 925:	0 0	0 0	0 0	0 0	0	0	0	0	0	1	0	0	Ó	ő
939:	0	0	Ó	0	0	0	0	1	0	0	Ö	0	1	0
953:	0	0	0	0	0	1 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0
967: 981:	0	0 0	0 0	0 0	0 0	0	0	0	1	0	0	0	0	Ö
995:	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1009:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1023:	0	0											The street	

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:43:47.07

Detector ID: 35 Acquisition Start: 27-AUG-2005 08:50:13.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.50

Batch Id: 0508094A-RA Sample Id: 04

Sample Type: RA

Pk It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
-	4615.11	39		391.97 618.52			3.82E-03 2.65E-03		
3 0	5276.51	27 25		800.16			2.45E-03		

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:43:50.45

Acquisition Start: 26-AUG-2005 12:01:39.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.20

Pk :	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	0	4606.30 5275.01 5814.06	4 9 3	051	4.91	389.00 618.00 807.50	530	177	6.67E-05 1.50E-04 5.00E-05	33.3	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:43:50.70

Pk :	Ιt	Energy	Area	Bkgnd FWHM	I Channel	Left	Pw	Cts/Sec	%Err	Fit
2	0	4615.11* 5276.51* 5793.43*	91 62 58	0 55.83	391.97 618.52 800.16	530	177	8.88E-03 6.04E-03 5.69E-03	19.7	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:43:51

: MCA0: [AMSCOUNT] 00009067\$1 Configuration

: ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Analyses by

Sample title : VPSCR081705SL01

: 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:50:13 Sample date

Sample quantity : 1.0640 gram Sample ID

Sample geometry Sample type : RA

Detector geometry: Detector name : 035

0.0% Elapsed real time: 0 02:50:00.50 Elapsed live time: 0 02:50:00.00

Energy tolerance: 100.00 keV Half life ratio : 8.00 Systematic Error : 3.00 % Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

It	Energy	Area FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
_	4615.11* 5276.51* 5793.43*	91 83.75 62 55.83 58465.28	618.52	530	177	32.3 39.5 40.4		RA-226 RN-222 PO-218	1.10 0.749 0.704

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:44:09

Spectral File: ND_AMS_ARCHIVE_S:S_0508094A-RA\$05_RA.CNF

BATCH ID:	0508094A-RA	*	SAMPLE ID:		05
SAMPLE DATE: 17	-AUG-2005 00:00	*	ALIQUOT:	1.069E+00	gram
SAMPLE TITLE:	VPSCR081705SL02	*	DETECTOR NUMBER	R:	036
ACQ DATE: 27	-AUG-2005 08:50	*	AVERAGE EFFICI	ENCY:	20.93%
ELAPSED LIVE TIME:	10200.	*	RECOVERY:		92.77%
TRACER ID:	NONE	*	TRACER FWHM (ke	ev):	0.00
LAMBDA VALUE:	0.	*	ROI TYPE:	SI	'ANDARD
TRACER DPM AT SAMPI	E DATE: 0.000	*	CONFIDENCE FAC'	TOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:		2.71
ENERGY CAL DATE: 25	-AUG-2005 04:28	*	EFF CAL DATE:	25-AUG-2005	04:28
BKG FILENAME:	B 036 26AUG05	*	BKG ELAPSED TI	ME:	60000.
	- -	*	SAF:		2.34

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
PO-218	6003.0	79.05	0.51	100.0	1.010E+00	3.556E-01	1.802E-01
RN-222	5490.0	61.82	1.36	99.9	7.900E-01	3.158E-01	2.432E-01
RA-226	4785.0	79.39	0.17	100.0	1.014E+00	3.555E-01	1.383E-01

Muse B-29-05
Date

Ready
Date

-1.58962E-04 3,42318E+03 3,08239E+00 0009 Offset: Energy Offset: Energy Slope : Energy Quad : DKA100: [ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA\$05_RA.CNF;1 5500 17-AUG-2005 00:00 05 RA Energy (keV) 5000 Sample Time: Sample ID : (Sample Type: F 4500 Start Time: 27-AUG-2005 08:50 Real Time: 0 02:50:00.50 Live Time: 0 02:50:00.00 Title : 036 Sample Title: VPSCR081705SL02 4000 Spectrum 3500 N 1.5 <u>.</u> 0 ម etanoj

Channel														
1:	0	0	0	0	0	0	0	0 1	0	0 0	0 0	0	0 0	0 0
15: 29:	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	1	ő	ő
43:	Ö	Ö	Ŏ	ŏ	ŏ	Ö	Ŏ	0	0	0	1	0	0	0
57:	0	0	0	0	0	0	1	0	0	0	0	1	0	1 0
71:	0	0	0	0	0	0	0 0	0 1	0 0	0 0	0 1	0 0	0 1	0
85: 99:	0 0	0 0	0 0	0	0 0	0 1	0	0	0	0	Ó	0	Ö	ő
113:	0	0	Ö	Ó	Ö	Ö	1	Ŏ	Ŏ	Ŏ	Ö	Ō	0	0
127:	Ŏ	0	0	0	0	0	0	0	0	0	0	0	0	0
141:	0	0	0	0	0	0	0	0 0	1	0 0	0	1 0	0 0	1 1
155: 169:	0 0	1 0	0 0	0 0	1 0	1 0	0 0	0	0	0	Ö	0	ő	ò
183:	Ö	Ö	Ö	ő	Ŏ	ŏ	Ŏ	0	0	0	0	0	0	0
197:	0	1	0	0	1	0	0	0	0	1	1	0	0	0 0
211:	0	0	0	0	0	1 0	0 0	0 0	1 0	0 0	0 0	0 1	0 2	0
225: 239:	1 0	0 0	0 0	0 0	0 0	0	0	0	0	1	Ö	i	ō	ŏ
253:	Õ	Ö	Ö	ŏ	ĭ	Ŏ	Ŏ	Ō	0	0	0	. 0	0	0
267:	Ō	0	0	0	0	1	0	0	0	0	0	0	0	0
281:	0	0	1	0	0	0	0	0 0						
295: 309:	0 0	0 0	0 0	1 0	0 0	0 0	0 0	Λ	0	1	Ö	1	ŏ	ŏ
309: 323:	0	0	1	0	1	0	0	. 0	Ŏ	ò	0	1	Ö	0
337:	0	0	0	0	1	0	0	0	0	1	0	0	0	0
351:	0	0	0	1	0 0	0 0	0 1	0 1	0 1	0 0	0 0	0 0	0 0	0 0
365: 379:	0 0	0 0	0 1	0 0	0	0	Ó	i	Ó	Ö	ŏ	1	Ŏ	Ĭ
393:	1	ŏ	ò	Ŏ	Ŏ	Ŏ	1	Ò	Ö	0	0	1	0	0
407:	0	0	0	0	0	0	0	1	0	0	0	0 0	1 0	1 0
421:	0	0	1	0	1 0	1 0	1 0	0 2	0 2	0 0	0 1	0	0	0
435: 449:	0 0	0 1	0 0	0 1	0	0	0	0	1	Ö	ò	Ŏ	1	ŏ
463:	0	ò	ŏ	ò	ŏ	Ö	Ŏ	Ŏ	Ó	0	0	0	0	0
477:	0	0	1	0	0	0	0	0	0	0	0	0	0	0 0
491:	0	0	0	0 0	0 1	0	0 0	0						
505: 519:	0 0	0 0	0 0	0	0	0	Ö	0	0	Ö	Ö	1	Ŏ	ŏ
533:	Õ	ŏ	Ŏ	Ö	Ŏ	Ö	Ö	0	0	0	0	1	0	0
547:	0	0	0	0	0	0	0	0	0	0 0	0 0	1 0	0 1	0 0
561: 575:	0 0	0 0	2 1	0 0	1 0	0 0	0 1	0 0	0 0	0	0	0	Ó	Ö
575: 589:	0	0	Ó	1	ŏ	Ŏ	ò	Ö	ĭ	Ŏ	Ö	Ö	0	0
603:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
617:	0	1	0	0	0	0	0	0	0 0	1 0	1 0	0 1	0 0	0 0
631: 645:	0	1 0	0 0	0 0	0 0	1 0	1 0	1 0	0	Ö	0	Ó	Ö	ŏ
659:	Ö	Ö	Ö	ŏ	ŏ	Ŏ	1	ŏ	Ŏ	Ö	0	0	0	0
673:	0	0	0	1	1	0	1	0	1	1	0	1	0	0 0
687:	0	0 .	0 0	0 0	0 0	0 0	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0
701: 715:	0 0	1 1	0	0	0	0	0	0	Ö	1	Õ	Ŏ	Ŏ	0
729:	1	1	Ō	1	Ō	0	1	0	0	0	0	1	0	0
743:	0	0	1	1	0	1	0	0	0 0	1 0	0 1	0 0	0 0	0 0
757: 771:	1 0	1 0	0 1	0 0	1 0	0 0	0 0	0	0	0	Ó	1	1	ő
785:	ŏ	2	ò	Ŏ	Ŏ	Ĭ	Ŏ	Ö	Ō	0	0	1	0	0
799:	0	0	1	1	0	0	0	0	0	0	0	1	0	0
813:	1	0	0	0	0	0 0	0	0 0	0 0	0 0	1 0	0 1	0 0	0 0
827: 841:	0 0	0 0	0 0	0 0	0 0	0	2 0	0	0	1	Ö	Ö	ŏ	0
855:	Ŏ	Ö	Ö	Ŏ	ŏ	Ŏ	Ŏ	Ö	Ö	0	1	0	0	0
869:	0	0	0	0	1	0	0	0	1	0	0	0	0 0	0 0
883:	0	0 1	0 0	0 0	0 0	0 1	2 0	0 0	0 0	0	1	0 0	0	1
897: 911:	0 0	1	1	0	0	0	1	0	1	Ö	0	0	0	0
925:	ő	0	ò	0	0	1	0	0	0	0	0	0	1	1
939:	1	0	1	0	0	0	0	0	0	0 0	1 0	0 0	0 0	0 1
953: 967:	0 1	0 0	0 0	0 1	0 0	0 0	1 0	0 0	0 0	0	0	0	0	0
967: 981:	0	0	0	0	0	0	0	Ö	Ö	Ō	0	Ō	0	0
995:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1009:	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1023:	0	0											T d d	

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:43:55.70

Detector ID: 36 Acquisition Start: 27-AUG-2005 08:50:33.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.50

Batch Id: 0508094A-RA Sample Id: 05

Sample Type: RA

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4623.31	34	0	5.78	397.50			3.33E-03		
2	0	5291.21	27	0	3.08	626.26	533	177	2.65E-03	19.2	
3	0	5770.05	34	03	20.57	793.88	728	164	3.33E-03	17.1	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:44:07.90

Acquisition Start: 26-AUG-2005 12:01:42.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk It	t	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2 (0	4607.05 5276.04 5814.21	1 8 3	03	63.72	392.00 621.00 809.50	533	177	1.67E-05100.0 1.33E-04 35.4 5.00E-05 57.7	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:44:08.14

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	0	4623.31* 5291.21* 5770.05*	79 62 79	0	3.08	397.50 626.26 793.88	533	177	7.78E-03 6.06E-03 7.75E-03	19.7	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:44:08

Configuration : MCA0:[AMSCOUNT]00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

: VPSCR081705SL02 Sample title

: 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:50:33 Sample date

Sample quantity : 1.0686 gram Sample ID : 05

Sample geometry : Sample type : RA

Detector name : 036 Detector geometry:

0.0% Elapsed real time: 0 02:50:00.50 Elapsed live time: 0 02:50:00.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

It	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0	4623.31* 5291.21* 5770.05*	62	3.08	397.50 626.26 793.88	533	177	34.4 39.4 34.5		RA-226 RN-222 PO-218	0.940 0.733 0.937

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:44:35

BATCH ID:	0508094A-RA	*	SAMPLE ID:		06
	G-2005 00:00	*	ALIQUOT:	1.026E+00	gram
	CR081705SL03	*	DETECTOR NUME	BER:	037
	G-2005 08:50	*	AVERAGE EFFIC	CIENCY:	21.04%
ELAPSED LIVE TIME:	10200.	*	RECOVERY:		79.44%
TRACER ID:	NONE	*	TRACER FWHM	(kev):	0.00
LAMBDA VALUE:	0.	*	ROI TYPE:	ST	ANDARD
TRACER DPM AT SAMPLE D	ATE: 0.000	*	CONFIDENCE FA	ACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	:	2.71
ENERGY CAL DATE: 25-AU	G-2005 04:28	*	EFF CAL DATE:	25-AUG-2005	
	037 26AUG05	*	BKG ELAPSED T	TIME:	60000.
	- -	*	SAF:		2.12

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
PO-218	6003.0	35.87	0.17	100.0	5.546E-01	2.731E-01	1.517E-01
RN-222	5490.0	54.78	0.34	99.9	8.475E-01	3.397E-01	1.778E-01
RA-226	4785.0	88.70	0.34	100.0	1.371E+00	4.354E-01	1.777E-01

-1.80693E-04 3,43795E+03 3.11040E+00 9009 Energy Offset: Energy Slope : Energy Quad DKA100; [ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA\$06_RA.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 Sample Time: Sample Type: Sample ID : 4500 Start Time: 27-AUG-2005 08:50 Real Time: 0 02:50:00.50 Live Time: 0 02:50:00.00 Title : 037 Sample Title: VPSCR081705SL03 4000 Spectrum 3500 _ ∾ stnuo⊃ ო

Channel														
1: 15:	0	0 0	0	0	0	0 0	0	0 0	0	0	0	0	0 0	0 0
29:	0	0	0	0	0	0	0	0	0	1	0	0	0	0 0
43: 57:	0 0	0 _. 0	0 0	0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0
71:	0	0	0	0	0	0	0	0	1	0	0	0	0	0
85: 99:	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 1	0 0	0 0	0 0
113:	1	1	Ö	Ŏ	1	Ŏ	0	0	0	0	0	0	0	0
127:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 1	1 1
141: 155:	0	0	0	0	0	Ö	Ö	ő	0	0	0	0	0	1
169:	1	0	0 0	0 1	1 0	0 0	0 0	1 1	0 0	0 0	. 0 0	0 0	0 0	0 0
183: 197:	0 0	1	0	0	0	1	1	Ó	Ö	0	0	Ō	0	1
211:	1	0	0 1	0	0 2	1 1	0 0	0 0	0 0	0 0	2 0	0 0	0 1	0 1
225: 239:	0 0	0	0	0	0	Ó	1	0	2	ŏ	2	0	0	Ö
253:	0	0	0	0	1 0	0 0	0. 0	0 0	0 2	0 0	1 1	0	0 0	2
267: 281:	2 0	0 0	0 1	0 0	0	0	0	0	0	Ö	ò	1	1	1
295:	0	0	0	0	0	0	0	1 0	0 0	1 0	0 0	0 0	0 1	0 0
309: 323:	1 1	0 0	0 0	0 0	0 0	0 0	0 1	0	0	0	1	Ö	ò	0
337:	0	0	1	0	0	1	1	0	0 0	0 0	1 1	0 0	0 0	0 1
351: 365:	0 1	0 0	0 0	0 0	0 0	0 0	0 1	0 1	0	4	Ó	Ö	0	1
379:	0	0	0	0	0	0	0	1	0 0	0 1	0 0	0 0	0 0	0 1
393: 407:	0 1	1 0	0 0	1 0	0 0	0 2	0 1	0 1	0	0	1	Ö	1	0
421:	0	0	1	0	0	0	0	0	0 0	0 1	0 0	0 0	0 1	0 0
435: 449:	0 0	0 0	0 1	0 0	1 0	1 0	2 0	1 0	0	0	1	0	Ó	1
463:	1	0	0	0	0	0	0	1	0	0	0	0 0	0 1	0 0
477: 491:	0 1	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	Ö	0
505:	0	0	0	0	0	1	0	0 0	0	0 0	0 0	0 0	0 0	0 0
519: 533:	1 0	0 0	0 0	0 0	0 0	0 0	0 0	1	0	0	0	Ö	0	0
547:	0	0	0	0	1	0	0	1 0	1	0 0	0 0	0 0	0 0	0 0
561: 575:	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0	Ó	0	0	0	0	0
589:	0	0	0	0	0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0 0
603: 617:	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	Ö	0	1	0
631:	0	0	1 0	0	0 0	1	1	1	0	2 0	0 0	0	0 0	0
645: 659:	0 0	0 0	0	0	1	1 0	ó	0	Ô	Ö	Ö	Ö	1	0
673: 687:	0	0	0 0	0 0	1 0	0 1	0 1	0 1	0 0	0 0	0 1	0 0	0 1	0 2
701:	0 0	1 0	0	0	0	0	0	0	0	0	0	0	0	0
715: 729:	0 0	0 0	0 0	0 0	1 0	0 1	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0
743:	1	1	0	0	Ö	0	Ö	Ö	0	i	0	Ō	0	0
757: 771:	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0	2 0	0 0	1 0	0 0	0 0
785:	0	Ö	Ö	Ö	Ö	0	0	0	0	0	0	0	0	0
799: 813:	0 0	0 0	0 0	0 0	0 0	0 0	0 1	1 0	0 0	0 0	0 0	0 0	1 0	0 0
827:	0	0	Ō	0	0	0	0	0	1	0	0	0	0	0
841: 855:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	1 0	0 0	0 0	0 0	0 0
869:	1	0	0	0	0	1	0	0	0	0	0	Ō	0	0
883: 897:	0 0	0 0	0 0	0 0	1 0	0 0	0 0	0	0 1	0 0	0 0	0 1	0 1	0 0
911:	0	0	0	0	0	0	0	0	0	Ö	0	Ó	0	0
925: 939:	0 1	0 0	0 1	0 0	1 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1
953:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
967: 981:	0 0	1 0	0 0	0 1	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0
995:	0	0	0	0	0	0	0	0	0	0	0	Ö	0	1
1009: 1023:	0 0	0 0	0	0	1	0	0	0	0	0	0	0	0	0
10231	J	U											Mar 2 .m.	

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:44:13.27

Detector ID: 37 Acquisition Start: 27-AUG-2005 08:50:56.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.50

Batch Id: 0508094A-RA Sample Id: 06

Sample Type: RA

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
		4629.18 5358.14	42 26			391.90 641.23			4.12E-03 2.55E-03		
3	0	5794.02	17	0	3.11	794.12	720	164	1.67E-03	24.3	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:44:33.99

Acquisition Start: 26-AUG-2005 12:01:45.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	Ō	4607.18 5275.28 5814.86	2 2 1	0	0.00	384.50 612.50 801.50	525	176	3.33E-05 3.33E-05 1.67E-051	70.7	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:44:34.24

Pk	It Energy		Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	0	4629.18* 5358.14* 5794.02*	89 55 36	0	0.00	391.90 641.23 794.12	525	176	8.70E-03 5.37E-03 3.52E-03	19.7	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:44:35

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL03

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:50:56

Sample ID : 06 Sample quantity : 1.0256 gram

Sample type : RA Sample geometry :

Detector name : 037 Detector geometry:

Energy tolerance: 100.00 keV Half life ratio: 8.00 Errors propagated: Yes Systematic Error: 3.00 % Efficiency type: Average value Efficiencies at: Peak Energy

Abundance limit : 75.00

It	Energy	Area	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0	4629.18* 5358.14*			391.90 641.23			31.0 39.5		RA-226 RN-222	1.09 0.673
•	5794.02*			794.12			48.7		PO-218	0.441

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:44:54

Spectral File: ND AMS ARCHIVE_S:S_0508094A-RA\$07_RA.CNF

07 SAMPLE ID: 0508094A-RA BATCH ID: 1.014E+00 gram ALIQUOT: SAMPLE DATE: 17-AUG-2005 00:00 038 DETECTOR NUMBER: SAMPLE TITLE: VPSCR081705SL04 20.12% AVERAGE EFFICIENCY: 27-AUG-2005 08:51 ACO DATE: 86.50% RECOVERY: ELAPSED LIVE TIME: 10200. TRACER FWHM (kev): 0.00 NONE TRACER ID: STANDARD ROI TYPE: LAMBDA VALUE: 0. 4.65 CONFIDENCE FACTOR: TRACER DPM AT SAMPLE DATE: 0.000 2.71 LLD CONSTANT: SAMPLE MATRIX: SOIL 25-AUG-2005 04:28 EFF CAL DATE: ENERGY CAL DATE: 25-AUG-2005 04:28 60000. BKG ELAPSED TIME: B 038 26AUG05 BKG FILENAME: 2.16 SAF:

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
PO-218	6003.0	42.52	0.68	100.0	6.384E-01	2.936E-01	2.122E-01
RN-222	5490.0	61.45	1.19	99.9	9.231E-01	3.556E-01	2.525E-01
RA-226	4785.0	57.64	0.68	100.0	8.652E-01	3.424E-01	2.122E-01

Jay Tue

Reviewer

8-29-05

Date

Date

-1.46447E-04 3,45434E+03 3.08936E+00 6000 Offset: Energy Slope Energy Quad Energy DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA\$07_RA.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 Sample Type: RA Sample Time: Sample ID : 4500 Title : 038 Sample Title: VPSCR081705SL04 Start Time: 27-AUG-2005 08:51 Real Time: 0 02:50:00.40 Live Time: 0 02:50:00.00 4000 Spectrum 3500 N 0 1,5 <u>س</u> etunoj

1023:

Channel														
1:	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
15:	0	0	0	0	0	0 0	0	0						
29: 43:	0 0	0 0	0 0	0 0	0 0	0	0	0	Ö	1	Ö	ŏ	Ŏ	Ö
57:	0	1	Ö	Ö	Õ	1	Ŏ	Ŏ	Ŏ	Ö	0	0	0	0
71:	Ö	ò	ŏ	ĭ	Ö	Ó	Ō	0	0	0	0	0	0	1
85:	Ō	Ö	1	0	0	0	0	0	0	0	1	0	0	0
99:	0	1	0	0	0	0	0	0	0	0	0	1	0	0 0
113:	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0
127:	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	Ö	Ö	ŏ
141: 155:	0 0	0 0	0 1	0	0	0	0	Ö	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	0
169:	0	Ö	i	Ö	Ŏ	Ŏ	Ö	Ö	Ö	Ö	0	0	0	0
183:	Ŏ	Ŏ	Ö	1	Ō	Ō	0	0	1	0	0	0	0	0
197:	0	1	0	1	0	0	0	0	0	0	0	0	0	0 0
211:	0	0	0	0	0	0	0	0	0	0	0 0	1 0	0 0	0
225:	0	0	1	0	0 0	0 0	0 0	0 1	1 0	0 0	0	0	Ö	ő
239: 253:	0 0	0 0	1 1	1 0	0	1	0	i	Ö	Ö	Ö	Ŏ	Ö	Ō
267:	0	1	Ó	0	Ö	ò	ő	ò	Ö	ĺ	0	0	0	0
281:	ĭ	ò	Ŏ	Ŏ	Ŏ	1	0	0	0	1	1	0	0	0
295:	0	1	0	0	0	0	0	1	0	2	0	0	0	0
309:	0	0	0	0	0	1	0	0	0	0	0	0	0 0	0 0
323:	0	0	0	0	0	0	0 0	0 0	0 1	0 0	0 0	0 0	0	0
337:	0 0	0	0 0	0 0	0 1	0 0	0	0	Ó	Ö	Ö	ŏ	Ŏ	ĭ
351: 365:	0	0	0	Ö	Ó	ő	ŏ	Ö	ŏ	Ö	Ŏ	Ō	0	0
379:	ŏ	ĭ	Ŏ	Ŏ	Ö	Ö	Ö	0	0	1	0	0	0	0
393:	1	0	0	0	2	0	0	0	0	0	0	0	1	0 0
407:	0	1	0	0	0	0	0	1	0	0	0	0 0	0 1	1
421:	1	0	0	1	0 0	0 0	1 0	1 0	1 1	0 1	0	1	Ó	Ó
435: 449:	1 0	0 0	1 0	0 0	0	0	0	0	Ó	Ó	ŏ	Ö	Ŏ	Ŏ
449: 463:	1	0	0	0	Ö	Ö	Ŏ	Ŏ	ĭ	Ŏ	Ŏ	0	0	0
477:	ò	Ŏ	ĭ	ŏ	ŏ	ŏ	Ö	Ō	0	1	0	1	0	0
491:	Ö	Ö	Ó	0	0	0	1	0	0	0	0	0	0	0
505:	0	0	1	0	0	0	0	0	0	0	1	0	0 0	0 0
519:	0	0	0	1	0	0	0 0	0 0	0 1	0	0 0	1 0	1	0
5 33: 547:	0 0	0 0	0 0	0 0	0 0	1 0	0	1	i	0	Ö	ő	ò	Ö
561:	0	0	1	1	Ö	1	Ö	i	ò	Ĭ	Ĭ	Ō	0	0
575:	Ŏ	Ŏ	ò	Ó	Ŏ	Ó	Ô	0	0	0	0	0	0	0
589:	0	0	0	1	0	0	0	0	0	0	0	0	1	0
603:	0	0	0	0	0	0	0	0	0	0	1	1 0	0 0	0 0
617:	0	0	0	0	0	0 0	0 0	1 0	0 0	0 1	0 1	0	2	ő
631:	0 0	0 0	0 1	0 1	0 0	0	0	0	Ŏ	i	ò	Ŏ	ō	Ō
645: 659:	0	0	Ó	i	Ö	Ö	1	Ŏ	ŏ	Ò	Ö	0	0	0
673:	Ö	ŏ	Ŏ	ò	Ö	Ŏ	Ó	0	1	0	1	0	0	0
687:	0	0	0	0	0	0	0	0	0	0	0	0	1	0 0
701:	0	0	0	0	0	0	0	0 0	0 0	0 1	0 0	0 0	0 1	0
715: 729:	0 1	0 0	1 0	0 0	0 0	0 0	0 0	0	0	Ó	Ö	Ŏ	i	ŏ
743:	Ó	. 0	0	0	1	ŏ	ŏ	ŏ	Ŏ	Ö	Ö	0	0	1
757:	ŏ	Ŏ	ŏ	Ŏ	ò	Ō	0	0	0	0	0	0	1	0
771:	0	1	0	0	0	0	0	0	2	0	0	1	0	0
785:	0	0	0	0	1	0	1	0	0 0	0 1	0 0	0	0 0	0 0
799:	0	0 0	0 0	0 0	0 0	0 0	1 0	0 0	0	Ö	0	. 0	Ö	ŏ
813: 827:	0	0	0	0	0	0	0	1	ŏ	Ŏ	Ŏ	ŏ	Ö	0
841:	Ö	Ö	Ö	Ö	ŏ	ŏ	ŏ	Ó	Ö	Ô	0	0	0	0
855:	Ō	Ŏ	Ŏ	Ō	Ō	1	0	0	0	0	0	0	0	0
869:	1	0	0	0	0	1	0	0	0	0	0	0	0 0	0 0
883:	0	0	0	0	1	1	0	0	1 0	0 0	2 0	0 0	1	0
897:	0	0 1	1 0	0 0	0 0	0 0	0 1	0 0	0	0	0	0	Ó	ő
911: 925:	0 0	0	0	1	0	0	Ó	0	1	1	ŏ	ő	0	Õ
939:	Ö	Ö	Ö	ò	ŏ	ŏ	Ö	0	0	0	0	0	0	0
953:	Ĭ	0	0	0	0	0	0	2	0	0	0	0	0	0
967:	0	0	0	0	0	0	0	0	0	0	0	0 1	1 0	Ü
981:	0	0	0	0	0	0	0	0	0	0 0	0 1	0	0	0 0 0 0 0
995:	0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0	Ö	0	0	ŏ
1009: 1023:	0 0	0	U	U	U	ı	U	J	U	J	•	•	•	-

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:44:39.28

Detector ID: 38 Acquisition Start: 27-AUG-2005 08:51:13.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.40

Batch Id: 0508094A-RA Sample Id: 07

Sample Type: RA

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4652.45	27	02	90.40	395.22			2.65E-03		
2	0	5259.05	29	0	3.09	601.31			2.84E-03		
3	0	5782.38	20	0	3.09	782.60	713	162	1.96E-03	22.4	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:44:52.98

Acquisition Start: 26-AUG-2005 12:01:48.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4605.66	4	024	10.97	379.50			6.67E-05		
2	0	5275.62	7	03!	52.19	607.00			1.17E-04		
3	0	5813.54	4	03	70.72	793.50	713	162	6.67E-05	50.0	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:44:53.24

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4652.45*	58	029	0.40	395.22			5.65E-03		
2	0	5259.05*	61	0	3.09	601.31			6.02E-03		
3	0	5782.38*	43	0	3.09	782.60	713	162	4.17E-03	22.7	

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:44:54

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL04

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:51:13

Sample ID : 07 Sample quantity : 1.0143 gram

Sample type : RA Sample geometry :

Detector name : 038 Detector geometry:

Elapsed live time: 0 02:50:00.00 Elapsed real time: 0 02:50:00.40 0.0%

Energy tolerance: 100.00 keV Half life ratio: 8.00
Errors propagated: Yes Systematic Error: 3.00 %
Efficiency type: Average value Efficiencies at: Peak Energy

Abundance limit : 75.00

It	Energy	Area FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0 0	4652.45* 5259.05* 5782.38*	58290.40 61 3.09 43 3.09	601.31	520	156 39.0 175 37.9 162 45.5		RA-226 RN-222 PO-218	0.748 0.799 0.552

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:45:09

BATCH ID: 0508	094A-RA	*	SAMPLE ID:		08
SAMPLE DATE: 17-AUG-200		*	ALIQUOT:	1.171E+00	gram
SAMPLE TITLE: VPSCR081	705SL05	*	DETECTOR NUMBE:	R:	039
ACO DATE: 27-AUG-200	5 08:51	*	AVERAGE EFFICI	ENCY:	20.45%
ELAPSED LIVE TIME:	10200.	*	RECOVERY:		83.77%
TRACER ID:	NONE	*	TRACER FWHM (ke	ev):	0.00
LAMBDA VALUE:	0.	*	ROI TYPE:	ST	ANDARD
TRACER DPM AT SAMPLE DATE:	0.000	*	CONFIDENCE FAC	TOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:		2.71
ENERGY CAL DATE: 25-AUG-200	5 04:28	*	EFF CAL DATE:	25-AUG-2005	04:28
	26AUG05	*	BKG ELAPSED TI	ME:	60000.
		*	SAF:		2.31

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
PO-218	6003.0	48.17	0.34	100.0	6.363E-01	2.832E-01	1.654E-01
RN-222	5490.0	64.17	0.51	99.9	8.481E-01	3.285E-01	1.841E-01
RA-226	4785.0	92.06	0.34	100.0	1.216E+00	3.951E-01	1.654E-01

9-29-06 Date 8/29/05 Date

```
-1.57003E-04
                                   3,43960E+03
                                              3,09399E+00
                                                                                                                                                                                                                                                                                                                                                                                                                          6000
                                   Offset:
                                              Slope
                                                           Energy Quad
                                    Energy
                                               Energy
DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA$08_RA.CNF;1
                                                                                                                                                                                                                                                                                                                                                                                                                          5500
                                   17-AUG-2005 00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                      Energy (keV)
                                                                                                                                                                                                                                                                                                                                                                                                                         5000
                                                            RA
                                                           Sample Type:
                                    Time:
                                     Sample Time:
Sample ID :
                                                                                                                                                                                                                                                                                                                                                                                                                           4500
                                   Start Time: 27-AUG-2005 08:51
Real Time: 0 02:50:00.40
Live Time: 0 02:50:00.00
            Title : 039
Sample Title: VPSCR081705SL05
                                                                                                                                                                                                                                                                                                                                                                                                                            4000
  Spectrum
                                                                                                                                                                                                                                                                                                                                                                                                                            3500
                                                                                    ო
                                                                                                                                                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                              N
                                                                                                                                                                                                                                     squnoj
```

Generated: 29-AUG-2005 06:44:58.34 Gross Sample Counts Within Peak Regions

Acquisition Start: 27-AUG-2005 08:51:33.01 Real Time: 0 02:50:00.40 Detector ID: 39

Live Time: 0 02:50:00.00

Sample Id: 08 0508094A-RA Batch Id:

Sample Type: RA

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	0	4606.99 5292.24 5792.77	40 28 21	031	L8.68	384.83 618.18 792.43	525	176	3.92E-03 2.75E-03 2.06E-03	18.9	

Generated: 29-AUG-2005 06:45:07.33 Background Counts Within Peak Regions

Acquisition Start: 26-AUG-2005 12:01:50.01

Real Time: 0 16:40:00.10 Live Time: 0 16:40:00.00

Pk It	Energy	Area	Bkgnd FWHM	I Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0	4606.03 5275.76 5814.31	2 3 2	0389.84	384.50 612.50 800.00	525	176	3.33E-05 5.00E-05 3.33E-05	57.7	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:45:07.59

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	0	4606.99* 5292.24* 5792.77*	92 64 48	03	18.68	384.83 618.18 792.43	525	176	9.03E-03 6.29E-03 4.72E-03	19.1	

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:45:08

: MCA0: [AMSCOUNT] 00009067\$1 Configuration

: ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Analyses by

Sample title : VPSCR081705SL05

: 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:51:33 Sample date

Sample quantity : 1.1710 gram Sample ID : 08

Sample geometry Sample type : RA

Detector name : 039 Detector geometry:

0.0% Elapsed live time: 0 02:50:00.00 Elapsed real time: 0 02:50:00.40

Energy tolerance: 100.00 keV Half life ratio : 8.00 3.00 % Systematic Error: Errors propagated: Yes Efficiency type : Average value Abundance limit : 75.00 Efficiencies at : Peak Energy

It	Energy	Area FWHM	Channel	Left P	w %Err	Fit	Nuclides	Activity pCi/gram
0	4606.99*	92361.16	384.83	307 15	6 31.7		RA-226	1.02
0	5292.24*	64318.68	618.18	525 17	6 38.1		RN-222	0.710
0	5792.77*	48399.12	792.43	719 16	3 44.0		PO-218	0.533

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:45:29

BATCH ID: 0508094A	-RA *	SAMPLE ID:	09
SAMPLE DATE: 17-AUG-2005 00	:00 *	ALIQUOT: 1.010E+00	gram
SAMPLE TITLE: VPSCR081705S		DETECTOR NUMBER:	040
ACO DATE: 27-AUG-2005 08		AVERAGE EFFICIENCY:	20.89%
ELAPSED LIVE TIME: 102		RECOVERY:	89.63%
	ONE *	TRACER FWHM (kev):	0.00
LAMBDA VALUE:	0. *	ROI TYPE: ST	ANDARD
	000 *	CONFIDENCE FACTOR:	4.65
	OIL *	LLD CONSTANT:	2.71
ENERGY CAL DATE: 25-AUG-2005 04	:28 *	EFF CAL DATE: 25-AUG-2005	04:28
BKG FILENAME: B 040 26AU		BKG ELAPSED TIME:	60000.
	*	SAF:	2.00

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
PO-218	6003.0	124.81	1.19	100.0	1.750E+00	4.615E-01	2.182E-01
RN-222	5490.0	114.98	1.02	99.9	1.613E+00	4.419E-01	2.078E-01
RA-226	4785.0	123.66	0.34	100.0	1.733E+00	4.576E-01	1.520E-01

-1.65420E-04 3,43216E+03 3.09948E+00 6000 Offset: Energy Offset: Energy Slope : Energy Quad : DKA100: [ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA\$09_RA.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 09 RA Sample ID : Sample Type: Sample Time: 4500 Title : 040 Sample Title: VPSCR081705SL06 27-AUG-2005 08:51 0 02:50:00.40 0 02:50:00.00 4000 040 Live Time : Start Time: Real Time : Spectrum 3500 Title ന 0 N ↤ squnoj

Channel														
1:	0	0	0	0	0	0	0	1 0	0 1	0	0	0	0	0 0
15: 29:	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	ő
43:	Ŏ	Ŏ	Ö ·	Ŏ	Ö	Ö	Ö	0	0	Ô	1	0	0	0
57:	0	0	0	0	1	0	1	0	0	0	0	0	0 0	0 0
71: 85:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 0	0	1	Ö
99:	1	0	0	0	0	0	ő	ŏ	1	Ŏ	1	Ö	1	ō
113:	1	Ö	Ö	Õ	0	0	0	1	0	0	0	1	0	0
127:	0	0	0	0	0	0	0	0	1 0	0 0	0 0	0	1 0	0
141: 155:	0 0	0 0	0 0	0 0	0 0	1 0	0 0	0 0	0	0	Ö	0	Ö	1
169:	ŏ	Ö	Ŏ	ŏ	Ö	Ŏ	Ŏ	Ö	Ö	Ö	Ō	0	3	0
183:	0	0	0	0	0	0	0	0	0	1	0	0 0	0 2	0 0
197: 211:	0 0	0 0	0 1	0 0	1	0	0 0	0 1	0 0	0 0	1 0	0	0	Ö
225:	Ö	1	ò	Ö	ò	Ö	ŏ	ò	Ŏ	Ŏ	Ö	Ö	Ō	0
239:	0	1	0	0	0	0	0	0	1	0	0	1	1	0 0
253: 267:	0 0	0 0	1 0	0 0	0	1 0	0 0	0 0	0 0	0	0	0 0	0 1	0
281:	0	0	1	0	1	Ö	ő	Ö	2	Ö	Ö	Ŏ	Ó	Ö
295:	Ŏ	1	0	0	1	0	0	1	0	1	0	0	0	1
309:	1	0	0	1	2	0	0	1	0	0	0 0	0 0	0 0	1 0
323: 337:	0 0	1 3	0 0	1 1	0	1 0	2 1	0 0	0 0	0	0	Ö	2	ŏ
351:	ŏ	Õ	1	0	2	2	1	Ó	1	0	1	0	0	0
365:	0	1	0	2	1	0	0	0 1	0 1	1 1	0 2	0 0	0 1	0 1
379: 393:	0 0	0 0	1 0	0 0	0 3	0 2	1 1	Ó	1	0	0	2	ó	ò
407:	Ŏ	1	Ö	0	1	0	0	1	0	1	1	0	0	0
421:	0	0	0	2	0	0	0	0	0	0	1 0	1 0	0 0	0 0
435: 449:	0 0 ·	0 0	0	0 1	0 0	0 0	1 0	0 0	0 0	1 0	0	0	0	0
463:	0	1	Ö	ò	Ö	ŏ	ŏ	1	ĭ	Ŏ	Ö	Ö	Ō	1
477:	1	0	0	0	0	0	0	0	1	1	1	0	1	0
491: 505:	0 0	0	0 0	0	0 0	0 0	0 0	0 1	0 0	0 0	1 0	0	0 0	0
505: 519:	0	2	0	0	0	0	0	Ó	0	0	0	Ö	ŏ	ĭ
533:	0	0	0	0	0	0	0	0	0	0	0	1	0	0
547: 561:	0 1	1 1	1 3	0 0	0 0	0 0	0 0	0 0	1 0	0 2	0 0	0	0 0	0
575:	Ó	Ó	0	1	0	Ö	ő	Ö	ŏ	ō	2	ĭ	ŏ	ŏ
589:	0	1	0	1	1	0	0	0	0	0	0	1	0	0
603: 617:	0 0	0 0	0 0	0 1	0 0	0 1	0 0	0 1	0 0	1 0	1 0	0 0	1 0	1
631:	0	0	0	1	0	ò	1	ż	Ö	2	Ö	ő	ŏ	0
645:	1	0	0	0	0	1	0	0	2	1	1	0	1	0
659: 673:	1 0	2 0	1 1	1 0	0 0	0 0	0 0	1 0	0 0	1 0	1 1	0 0	0 0	0
687:	0	0	Ó	0	1	0	0	2	1	Ö	Ö	ŏ	Ö	1
701:	0	0	1	1	0	1	0	3	0	0	1	0	0	0
715: 729:	1 1	0 0	1 2	0 0	2 1	0 1	0 0	0 0	0 1	0 0	0	1 2	1 0	0 0
743:	ź	Ö	1	Ö	Ó	ó	2	1	ò	Ö	Ŏ	1	0	2
757:	1	0	0	0	0	0	0	1	0	0	0	2	0 0	0 3
771: 785:	0 0	1 0	0 1	0 0	1 0	0 0	0 0	1 0	0 1	0 0	0 0	0 0	1	0
799:	Ŏ	.0	Ó	1	Ŏ	Õ	Ö	Ŏ	ò	ĭ	Ö	ŏ	0	1
813:	Q	0	0	0	0	0	0	1	0	1	1	1.	1	0
827: 841:	0 0	0 1	0 1	0 1	0 0	0 1	0	1 0	0	1 0	0 0	0 1	0 0	1 0
855:	1	Ö	ò	ò	ŏ	i	ĭ	Ö	ŏ	2	2	0	1	1
869:	1	1	0	0	1	3	0	0	0	0	0	0	0	0 0
883: 897:	0 0	0 0	0 0	1 0	0 1	1 0	0 1	0 0	0 1	0 0	0 1	0 0	0 0	0
911:	1	1	. 1	0	0	0	0	1	0	1	0	0	0	1
925:	0	3	1	0	1	0	1	1	0	0 0	1 0	1 0	0 0	1 0
939: 953:	1 0	0 0	3 1	0 1	0 0	0 0	0 0	0 0	0 1	0	0	0	0	1
967:	0	0	0	0	0	0	0	0	0	0	1	1	0	0
981:	0	0	0	0	1	0	1	0	0	0	0 1	0 1	0 0	1 1
995: 1009:	0 0	1 0	1 0	0 1	0 0	0 0	0 0	0 0	0 0	1 0	0	0	0	1
1023:	Ö	ő	Ū	•	ū	-	•	-	-	-	-			
													274	

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:45:12.74

Detector ID: 40 Acquisition Start: 27-AUG-2005 08:51:50.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.40

Batch Id: 0508094A-RA Sample Id: 09

Sample Type: RA

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4572.36	62	034	6.37	375.39			6.08E-03		
2	0	5304.57	58	040	9.85	624.95			5.69E-03		
3	0	5808.58	63	044	5.55	800.95	722	163	6.18E-03	12.6	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:45:27.77

Acquisition Start: 26-AUG-2005 12:01:53.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	0	4605.40 5275.78 5814.38	2 6 7	0	3.10	386.50 615.00 803.00	527	177	3.33E-05 1.00E-04 1.17E-04	40.8	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:45:28.02

Pk	It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	0	4572.36* 5304.57* 5808.58*	124 115 125	0409.85	375.39 624.95 800.95	527	177	1.21E-02 1.13E-02 1.22E-02	13.3	

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:45:28

: MCA0: [AMSCOUNT] 00009067\$1 Configuration

: ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Analyses by

Sample title : VPSCR081705SL06

: 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:51:50 Sample date

Sample quantity : 1.0096 gram Sample ID : 09

: RA Sample geometry Sample type

Detector geometry: Detector name : 040

0.0% Elapsed real time: 0 02:50:00.40 Elapsed live time: 0 02:50:00.00

Half life ratio : 8.00 Energy tolerance: 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes Efficiencies at : Peak Energy

Efficiency type : Average value

Abundance limit : 75.00

It	Energy	Area FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0	4572.36* 5304.57*	124346.37 115409.85			156 25.5 177 26.5		RA-226 RN-222	1.55 1.45
0	5808.58*	125445.55			163 25.4		PO-218	1.57

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:45:46

Spectral File: ND AMS ARCHIVE S:S 0508094A-RA\$10_RA.CNF

BATCH ID:	0508094 A- RA	*	SAMPLE ID:		10
SAMPLE DATE:	17-AUG-2005 00:00	*	ALIQUOT:	1.029E+00	gram
SAMPLE TITLE:	VPSCR081705SL07	* *	DETECTOR NUMBE	R:	041
	27-AUG-2005 08:52	*	AVERAGE EFFICI	ENCY:	21.11%
ELAPSED LIVE TIME	10200.	*	RECOVERY:		85.76%
TRACER ID:	NONE	*	TRACER FWHM (k	ev):	0.00
LAMBDA VALUE:	0.	*	ROI TYPE:	ST	ANDARD
TRACER DPM AT SAM	IPLE DATE: 0.000	*	CONFIDENCE FAC	TOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:		2.71
	25-AUG-2005 04:28	*	EFF CAL DATE:	25-AUG-2005	04:28
BKG FILENAME:	B 041 26AUG05	*	BKG ELAPSED TI	ME:	60000.
	- -	*	SAF:		2.16

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
PO-218	6003.0	79.07	0.85	100.0	1.125E+00	3.822E-01	2.151E-01
RN-222	5490.0	84.07	0.17	99.9	1.197E+00	3.931E-01	1.423E-01
RA-226	4785.0	96.86	0.34	100.0	1.378E+00	4.233E-01	1.666E-01

| Regile | 8/29/05 |
| Date |

-1.68087E-04 3,45145E+03 3,11669E+00 6000 Energy Offset: (Energy Slope : (Energy Quad : -DKA100; [ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA\$10_RA.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 Sample Time: Sample ID : Sample Type: 4500 27-AUG-2005 08:52 0 02:50:00.40 0 02:50:00.00 Title : 041 Sample Title: VPSCR081705SL07 4000 041 Live Time : Start Time: Real Time : Spectrum 3500 Title ന N squnoj

Channel														
1: 15: 29: 43: 57: 71: 85: 127: 113: 127: 141: 155: 169: 183: 197: 211: 225: 239: 267: 281: 295: 309: 323: 337: 351: 365: 379: 421: 435: 447: 451: 505: 519: 533: 547: 561: 575: 589: 603: 617: 631: 645: 659: 673: 673: 775: 771: 785: 799: 813: 827: 785: 799: 813: 827: 785: 799: 813: 827: 785: 799: 813: 827: 785: 799: 813: 827: 841: 855: 8897: 911: 925: 939: 939: 939: 939: 939: 939:	000000000000000000000000000000000000000	000010000000000000001000100010001000000	000010000000010010200100010000000000000	000000001110000000000000010101020000101011000011000011000001000000	000000000000000000000000001110000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0001000000000000001000100120000001001001	000000100100000000000000000000000000000	000001010100001100101001010000110000000	00000000000000011011000110100000001110000	000001001000000000001010000100000000000	000000000000000000000000000000000000000	

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:45:33.36

Detector ID: 41 Acquisition Start: 27-AUG-2005 08:52:07.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.40

Batch Id: 0508094A-RA Sample Id: 10

Sample Type: RA

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4613.31	45	0 :	20.98	380.60			4.41E-03		
2	0	5283.96	39	04	39.39	607.90			3.82E-03		
3	0	5801.95	37	02	41.45	787.62	712	162	3.63E-03	16.4	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:45:44.37

Acquisition Start: 26-AUG-2005 12:01:56.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk I	Ιt	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec %Err	Fit
2	0	4605.54 5275.52 5815.86	2 1 5	0 3.12	378.00 605.00 792.50	518	175	3.33E-05 70.7 1.67E-05100.0 8.33E-05 44.7	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:45:44.62

Pk It	Energy	Area	Bkgnd FW	HM Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0	4613.31* 5283.96* 5801.95*	97 84 79	0439.	98 380.60 39 607.90 45 787.62	518	175	9.50E-03 8.24E-03 7.75E-03	16.0	

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:45:45

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL07

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:52:07

Sample ID : 10 Sample quantity : 1.0288 gram

Sample type : RA Sample geometry :

Detector name : 041 Detector geometry:

Energy tolerance: 100.00 keV Half life ratio: 8.00 Errors propagated: Yes Systematic Error: 3.00 % Efficiency type: Average value Efficiencies at: Peak Energy

Abundance limit : 75.00

It	Energy	Area FWHM	Channel	Left P	w %Err	Fit	Nuclides	Activity pCi/gram
Ō	4613.31* 5283.96* 5801.95*	97 20.98 84439.39 79241.45	607.90	_ :	5 29.9 5 32.1 2 33.2		RA-226 RN-222 PO-218	1.18 1.03 0.965

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:46:03

Spectral File: ND AMS ARCHIVE S:S 0508094A-RA\$11 RA.CNF BATCH ID: 0508094A-RA SAMPLE ID: 11 9.950E-01 gram 17-AUG-2005 00:00 ALIQUOT: SAMPLE DATE: 042 DETECTOR NUMBER: SAMPLE TITLE: VPSCR081705SL08 AVERAGE EFFICIENCY: 21.73% ACO DATE: 27-AUG-2005 08:52 98.29% ELAPSED LIVE TIME: 10200. RECOVERY: 0.00 TRACER ID: NONE TRACER FWHM (kev): STANDARD ROI TYPE: LAMBDA VALUE: 0. 4.65 TRACER DPM AT SAMPLE DATE: 0.000 CONFIDENCE FACTOR: LLD CONSTANT: 2.71 SAMPLE MATRIX: SOIL 25-AUG-2005 04:28 ENERGY CAL DATE: 25-AUG-2005 04:28 EFF CAL DATE: BKG ELAPSED TIME: 60000. BKG FILENAME: B 042 26AUG05

SAF:

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
PO-218	6003.0	127.46	0.51	100.0	1.589E+00	4.053E-01	1.436E-01
RN-222	5490.0	100.04	1.19	99.9	1.248E+00	3.578E-01	1.855E-01
RA-226	4785.0	70.67	0.00	100.0	8.810E-01	2.961E-01	6.453E-02
*****	****	*****	*****	*****	*****	*****	*****

Analyst

Reviewer

925-0

<u> 0/</u>

1.91

-1.86374E-04 3.44878E+03 3.12999E+00 6000 Offset: Energy Offset: Energy Slope : Energy Quad : DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA\$11_RA.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 Sample ID : 11 Sample Type: RA Time: Sample Time: Sample ID : 4500 042 VPSCR081705SL08 27-AUG-2005 08:52 0 02:50:00.50 0 02:50:00.00 4000 Title Sample Title: Live Time : Start Time: Real Time : Spectrum 3500 Title ი squnoე ന ↤

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:45:49.57

Detector ID: 42 Acquisition Start: 27-AUG-2005 08:52:25.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.50

Batch Id: 0508094A-RA Sample Id: 11

Sample Type: RA

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4609.24	37	0	3.13	379.32			3.63E-03		
2	0	5304.21	53	05	16.45	615.34			5.20E-03		
3	0	5798.55	67	01	53.35	787.67	712	163	6.57E-03	12.2	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:46:01.51

Acquisition Start: 26-AUG-2005 12:01:59.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4606.78	0	0	0.00	378.50	301	156	0.00E+00	0.0	
2	0	5275.65	7	03	13.00	605.50			1.17E-04		
3	0	5813.65	3	01	43.98	793.00	712	163	5.00E-05	57.7	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:46:01.77

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	0	4609.24* 5304.21* 5798.55*	71 100 127	05	16.45	615.34	518	176	6.93E-03 9.81E-03 1.25E-02	13.9	

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:46:02

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL08

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:52:25

Sample ID : 11 Sample quantity : 0.99500 gram

Sample type : RA Sample geometry :

Detector name : 042 Detector geometry:

Energy tolerance: 100.00 keV Half life ratio: 8.00
Errors propagated: Yes Systematic Error: 3.00 %
Efficiency type: Average value Efficiencies at: Peak Energy

Abundance limit : 75.00

It	Energy	Area FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0 0	4609.24* 5304.21* 5798.55*	71 3.13 100516.45 127153.35	615.34	518	156 32.9 176 27.8 163 24.5		RA-226 RN-222 PO-218	0.866 1.23 1.56

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:46:19

Spectral File: ND AMS ARCHIVE S:S 0508094A-RA\$12 RA.CNF

SAMPLE ID: 12 BATCH ID: 0508094A-RA 1.036E+00 gram 17-AUG-2005 00:00 ALIQUOT: SAMPLE DATE: 043 DETECTOR NUMBER: SAMPLE TITLE: VPSCR081705SL09 AVERAGE EFFICIENCY: 21.73% ACQ DATE: 27-AUG-2005 08:52 98.18% 10200. RECOVERY: ELAPSED LIVE TIME: 0.00 TRACER FWHM (kev): TRACER ID: NONE STANDARD ROI TYPE: LAMBDA VALUE: 0. TRACER DPM AT SAMPLE DATE: 0.000 CONFIDENCE FACTOR: 4.65 LLD CONSTANT: 2.71 SOIL SAMPLE MATRIX: EFF CAL DATE: 25-AUG-2005 04:28 ENERGY CAL DATE: 25-AUG-2005 04:28 60000. BKG ELAPSED TIME: BKG FILENAME: B 043 26AUG05 2.08 SAF:

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
PO-218	6003.0	95.51	0.17	100.0	1.145E+00	3.474E-01	1.153E-01
RN-222	5490.0	88.76	0.68	99.9	1.064E+00	3.355E-01	1.632E-01
RA-226	4785.0	103.83	0.17	100.0	1.244E+00	3.629E-01	1.153E-01

-1.89158E-04 3,44344E+03 3,13349E+00 6000 Energy Offset: : Energy Slope : : Energy Quad : -DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA\$12_RA.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 12 RA Sample Time: Sample ID : Sample Type: P 4500 Start Time: 27-AUG-2005 08:52 Real Time: 0 02:50:00.40 Live Time: 0 02:50:00.00 Title : 043 Sample Title: VPSCR081705SL09 4000 Spectrum 3500 ო 0 ø squnoj

Channel														
1:	0	0	0	1	0	0	0	0	0	0	0	0	0 0	0 0
15: 29:	0 0	0 1	0	0 0	0 0	0 0	0 0	0 0	0 0	1	0	0	0	Ö
43:	Õ	ò	Ö	Ö	ŏ	Ŏ	0	0	0	1	0	0	0	0
57:	0	0	0	0	0	0	0	0	0	0 0	0 0	0 1	1 0	0 0
71: 85:	0 1	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0	0	0	0	1	Ö
99:	Ó	Ö	Ö	ò	Ŏ	Ö	Ŏ	Ŏ	Ö	Ö	Ö	1	1	0
113:	0	0	0	0	1	1	0	0	0	0	0	0	0 0	0 0
127:	0 0	0 0	0 0	1 2	1 1	0 0	0 0	0 0	0 0	1 0	. 0	0	0	1
141: 155:	0	0	0	0	0	0	0	0	Ö	Ö	1	Ö	Ö	ò
169:	Ŏ	1	0	0	0	0	0	0	0	0	0	0	0	1
183:	1	0	0	0 0	0 0	0 0	2 0	0 0	1 0	0 0	0 1	0	1 0	0 1
197: 211:	0 1	0 0	1 1	1	0	0	0	1	Ö	ŏ	1	Ö	Ŏ	ó
225:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
239:	0	0	1	1 0	0 0	0 0	0 1	0 0	0 0	0 1	0 0	1 0	0 1	0 1
253: 267:	0 0	0 1	0 0	0	0	1	1	2	Ö	i	ŏ	Ŏ	0	ó
281:	0	0	0	1	0	1	0	0	0	0	1	0	0	0
295:	0	1	3 0	0 0	0 0	0 0	1 0	0 0	0 1	2 1	1 0	0 0	0 0	1 2
309: 323:	1 1	0 0	0	0	1	0	0	0	i	Ö	1	1	ĭ	ō
337:	ò	1	Ö	Ö	0	1	1	0	1	1	1	0	0	0
351:	0	0	0	0	1	1 0	0 0	0 0	0 1	0 0	0 1	0 0	0 1	1 0
365: 379:	0 0	0 0	0 1	1 0	1 1	0	0	1	Ó	0	Ó	Ö	ò	ĭ
393:	ĭ	Ö	0	0	0	0	0	0	0	0	0	0	1	0
407:	0	1	0	0	1	0	0 1	0 0	0 0	0 0	1 0	0 1	0 1	0 0
421: 435:	0 0	1 1	1 0	0 0	0 0	2 0	0	2	0	0	Ö	Ö	ò	1
449:	ŏ	Ö	ŏ	Ŏ	1	0	0	0	0	0	0	0	0	0
463:	0	0	0	1	0	0	0	2	0 0	1 0	0 0	1 0	0 0	0 0
477: 491:	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0	0	0	Ö	Ö
505:	Ŏ	Ö	Ö	ŏ	ŏ	ŏ	Ö	0	0	0	0	0	0	0
519:	0	0	0	0	0	0	1	0	0	0 0	1 0	0 0	1 0	0 1
533: 547:	. 0	1 0	1 0	0 1	0 1	0 0	0 0	0 0	2 0	0	0	0	1	1
561:	Ŏ	Ö	ŏ	ò	i	1	Ō	0	0	0	1	0	0	0
575:	1	0	1	0	0	0	0 0	0 1	0 0	1 0	0 0	0 0	0 0	1 0
589: 603:	0 0	0 0	2 0	0 0	0	0 0	0	Ö	0	0	1	Ö	ő	ő
617:	Ö	1	Ō	1	Ō	Ó	0	0	0	0	0	0	0	0
631:	0	1 0	0 0	0 0	0 0	0 0	0	0 0	0	0 1	1 0	0 0	1 0	0
645: 659:	0 0	0	1	0	0	0	0	0	Ö	i	ŏ	ŏ	Ö	ŏ
673:	0	Ö	Ó	2	0	2	0	1	0	0	1	1	0	0
687: 701:	0 0	1 1	0 0	1 0	0 0	2 1	1 0	0 1	0 0	0 0	0 0	0 0	. 0	0 0
701: 715:	1	Ó	1	1	2	i	1	Ó	1	Ö	ŏ	ŏ	0	1
729:	1	1	0	0	0	0	0	1	0	1	1	1 0	1 0	0 0
743: 757:	1 0	0 0	0 1	2 0	0 0	2 0	0 0	0 0	0 0	1 0	0 0	0	0	Ö
771:	1	ŏ	Ö	1	0	Ö	Ö	0	Ŏ	0	0	0	0	0
785:	0	0	0	0	1	0	0	0	1	1 1	0 0	0	1 1	0 0
799: 813:	0 0	0 0	1 1	0 0	0 0	1 0	0 0	0 0	0 0	0	0	1	Ò	ő
827:	Ŏ	1	i	Ŏ	Ö	Ö	1	Õ	Ö	0	1	0	0	0
841:	0	0	0	1	0	0	0	0	0 0	0 0	0 1	0 0	1	0 0
855: 869:	0 0	0 0	0	1 1	1 0	0 0	0	0 0	0	0	Ó	1	Ö	ő
883:	Ö	Ö	0	0	0	0	0	0	0	Ô	2	0	0	1
897:	1	1	0	0	0	0	0	0	0	0	0 1	2 0	0	0 0
911: 925:	0 1	0 0	1 0	1 0	0 0	. 0	0 0	0 1	1	2 0	0	0	0	0
939:	0	0	0	0	1	0	0	0	0	0	Ō	1	1	1
953:	0	0	0	0 0	0 0	0 0	0 0	0 0	0	1 0	0 0	0 0	0	0 0
967: 981:	0 0	0 0	1 1	0	0	0	0	0	0	0	0	Ö	Ö	0
995:	1	0 .	0	0	0	0	1	0	1	0	1	0	0	0
1009:	0	0	0	0	0	0	1	0	0	0	1	0	0	1
1023:	0	0					•						740	

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:46:07.00

Detector ID: 43 Acquisition Start: 27-AUG-2005 08:52:44.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.40

Batch Id: 0508094A-RA Sample Id: 12

Sample Type: RA

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4581.48	50	043	5.49	371.52			4.90E-03		
2	0	5286.91	43	047	7.86	610.84	519	176	4.22E-03	15.2	
3	0	5767.60	46	0 9	5.57	778.28	714	163	4.51E-03	14.7	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:46:17.80

Acquisition Start: 26-AUG-2005 12:02:03.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk	It	Energy	Area	Bkgnd F	MHW	Channel	Left	Pw	Cts/Sec %Err	Fit
1	0	4606.85	1	0 3	.13	380.00	303	155	1.67E-05100.0	
2	0	5274.32	4	0213	.08	606.50	519	176	6.67E-05 50.0	
3	0	5815.01	1	0 3	.13	795.00	714	163	1.67E-05100.0	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:46:18.05

Pk It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0	4581.48* 5286.91* 5767.60*	104 89 96	0477.86	371.52 610.84 778.28	519	176	1.02E-02 8.70E-03 9.36E-03	15.4	

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:46:18

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL09

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:52:44

Sample ID : 12 Sample quantity : 1.0365 gram

Sample type : RA Sample geometry :

Detector name : 043 Detector geometry:

Energy tolerance: 100.00 keV Half life ratio: 8.00 Errors propagated: Yes Systematic Error: 3.00 % Efficiency type: Average value Efficiencies at: Peak Energy

Abundance limit : 75.00

It	Energy	Area FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0	4581.48* 5286.91*	104435.49 89477.86			155 28.3 176 30.7		RA-226 RN-222	1.22 1.05
Ö	5767.60*	96 95.57			163 29.5		PO-218	1.12

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:46:43

************************** Spectral File: ND AMS ARCHIVE S:S 0508094A-RA\$13 RA.CNF 13 0508094A-RA SAMPLE ID: BATCH ID: 1.007E+00 ALIQUOT: gram 17-AUG-2005 00:00 SAMPLE DATE: 044 VPSCR081705SL10 DETECTOR NUMBER: SAMPLE TITLE: AVERAGE EFFICIENCY: 20.99% ACQ DATE: 27-AUG-2005 08:53 73.97% 10200. RECOVERY: ELAPSED LIVE TIME: 0.00 TRACER FWHM (kev): NONE TRACER ID: STANDARD ROI TYPE: LAMBDA VALUE: 0. 4.65 TRACER DPM AT SAMPLE DATE: 0.000 CONFIDENCE FACTOR: 2.71 LLD CONSTANT: SAMPLE MATRIX: SOIL 25-AUG-2005 04:28 ENERGY CAL DATE: 25-AUG-2005 04:28 EFF CAL DATE: 60000. B 044 26AUG05 BKG ELAPSED TIME: BKG FILENAME: 1.81 SAF: ******************************** NUCLIDE ACTIVITY SUMMARY MDC TPU/ERROR NUCLIDE ENERGY NET BKG %ABN ACTIVITY pCi/ gram 2-SIGMA pCi/ gram **AREA** 4.227E-01 2.272E-01 1.363E+00 100.0 PO-218 6003.0 80.43 1.02 2.497E-01 4.791E-01 RN-222 5490.0 101.81 1.36 99.9 1.727E+00 3.921E-01 2.008E-01 1.185E+00 RA-226 4785.0 69.91 0.68 100.0 *************************

```
-1.71265E-04
                                   3.44108E+03
                                             3.11251E+00
                                                                                                                                                                                                                                                                                                                                                                                                           6000
                                   Energy Offset:
                                             Energy Slope
Energy Quad
DKA100;[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA$13_RA.CNF;1
                                                                                                                                                                                                                                                                                                                                                                                                            5500
                                   17-AUG-2005 00:00
                                                                                                                                                                                                                                                                                                                                                                                                                       Energy (keV)
                                                                                                                                                                                                                                                                                                                                                                                                            5000
                                              13
RA
                                   Sample Time:
Sample ID :
Sample Type: R
                                                                                                                                                                                                                                                                                                                                                                                                            4500
             Title : 044
Sample Title: VPSCR081705SL10
                                   27-AUG-2005 08:53
                                              0 02:50:00.40
0 02:50:00.00
                                                                                                                                                                                                                                                                                                                                                                                                             4000
                                                           Live Time :
                                    Start Time:
                                                Real Time :
   Spectrum
                                                                                                                                                                                                                                                                                                                                                                                                             3500
                                                                                 ო
                                                                                                                                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                       N
                                                                                                                                                                                                                             squnoj
```

Channel														
1: 15:	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 1	0 1	0 0	0	0 0
29:	0	0	0	0	0	0	0 1	0 0						
43: 57:	0 0	0 1	0 0	0 0	0 0	0 0	Ó	0	0	Ô	Ö	0	0	0
71:	0	0	0	0	1	0	0	0 0	0 0	0 0	1 0	0 0	0 0	0 0
85: 99:	0 0	0 0	0 0	1 0	0 0	0 0	0 0	0	0	1	Ö	Ö	Ö	ŏ
113:	1	0	0	0	0	0	0	0	1	1	0	0 0	0 0	1 1
127: 141:	0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	1 0	0 0	1	0	0	ò
155:	1	0	Ō	0	0	0	0	0	0	0	0	0	0 0	0 0
169: 183:	0 0	0 0	0 0	1 0	0 0	0	0							
197:	0	0	0	0	1	0	0	0	0	0	0	0 0	1 1	0 1
211: 225:	1 0	0 0	0 0	0 0	1 0	0 1	0 0	0 0	0 2	0 0	1 0	0	Ó	i
239:	0	0	0	0	1	0	1	1	0	0	0	0	2 0	1 0
253: 267:	0 1	0 0	0 0	0 0	1 0	0 0	0 0	0 0	0 0	0 0	1 0	1 0	0	Ô
281:	0	0	0	0	1	0	0	0	2	2	0	0 0	0 0	0 0
295: 309:	0 0	0 1	2 0	0 0	1	0 0	0 0	2 0	0 1	0 0	0 0	0	0	Ô
323:	0	0	0	0	Ó	0	0	0	0	0	0	0 1	0 0	0 0
337: 351:	0 0	· 0	2 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0
365:	1	0	0	0	2	0	1	0	1	0	1	0	0	0 1
379: 393:	1 0	0 1	2 1	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0	ó
407:	1	0	0	0	2	0	1	1	0	0 1	0 1	0 0	0 1	0 1
421: 435:	2 0	1 0	0 2	0 0	0 0	1 0	0 0	0 0	0 1	Ó	0	0	0	1
449:	1	0	0	0	0	0	1 0	0 1	0 0	0 0	0 1	0 0	0 0	0 0
463: 477:	0 0	0 0	0 0	0 0	0 1	1 0	0	ó	0	Ö	ò	Ö	0	0
491:	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 3	1 0
505: 519:	1 1	0 0	0 0	0 2	0 0	0 0	0 1	0	0	0	Ö	0	1	0
533:	0	0	0	0	0	0	0	0 0	0 0	0 0	1 3	0 0	1 0	0 1
547: 561:	0 0	0 0	0 0	1 1	0 0	1 0	0 1	0	0	0	0	0	0	Ö
575: 589:	1 0	0 0	0 0	2 0	0 0	0 1	0 0							
603:	0	0	0	1	Ō	0	1	1	1	0	Ŏ	Ō	1	2
617: 631:	0 1	1 1	0 2	0 0	2 0	0 0	0 1	0 1	1 0	1 0	1	0 1	1	0 0
645:	0	1	0	0	1	0	0	0	Ō	Ó	2	0	0	0
659: 673:	0 0	2 0	0 1	1 0	0 0	0 0	1 0	0 0	1 0	1 1	1 0	1 0	0 0	0 0
687:	0	0	0	0	0	0	0	0	0	1	1	0	1	0
701: 715:	1 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 1	1 0	0 1	0 1	ó
729:	1	2	1	0	0	0	1	1	0	0	1	0	2 0	1 0
743: 757:	1 0	0 0	0 0	0 0	1 1	0 0	1 1	0 0	0 0	0 0	0 0	0	1	0
771:	1	1	0	0	0	1	1	0 0	0	0 0	1 0	0	0 0	0 0
785: 799:	0 0	0 0	0 0	1 0	0 0	1 2	0 1	0	0	0	0	0	1	1
813:	0	0	0	0	0	0	1 0	0 0	0 0	0 0	0 1	0 0	0 0	0
827: 841:	0 0	0 0	0 0	0 1	0 0	0 0	0	0	0	1	i	Ö	0	ò
855:	0	1	0	0	1	0	0 0	0 0	1 0	0 0	0 1	1 1	1 0	0 1
869: 883:	0 0	0 0	0 0	0 0	1 0	1 0	0	1	0	1	2	Ó	0	0
897: 911:	0 0	1 0	0 0	0 1	0 0	0 1	0 0	1 0	1 0	0 0	0 1	0 0	1 0	1 0
925:	0	0	0	0	1	0	1	1	0	1	0	0	0	0
939: 953:	0 0	0	0 2	1 0	0 0	2 0	1 0	0 0	0 0	0 0	0	0 0	0 0	0 0
967:	1	0	0	0	1	0	0	0	0	1	1	1	1	0
981: 995:	0 0	0 1	0 0	0 0	0 0	0 0	0 0	1 1	0 0	1 1	0 0	0 0	0 0	0 0
1009:	0	0	0	0	0	1	ő	Ó	ŏ	ò	ŏ	1	1	Ö
1023:	0	0											THA	

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:46:23.17

Detector ID: 44 Acquisition Start: 27-AUG-2005 08:53:02.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.40

Batch Id: 0508094A-RA Sample Id: 13

Sample Type: RA

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4644.19	39	030	8.14	395.13			3.82E-03		
2	0	5289.74	57	0	0.00	614.74			5.59E-03		
3	0	5781.84	45	023	6.55	786.04	717	162	4.41E-03	14.9	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:46:41.80

Acquisition Start: 26-AUG-2005 12:02:06.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
_	-	4606.56 5274.54	4 8			382.50 609.50			6.67E-05 1.33E-04		
		5814.39	6			797.50			1.00E-04		

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:46:42.05

Pk It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0	4644.19* 5289.74* 5781.84*	70 102 80	0 0.00		522	176	6.85E-03 9.98E-03 7.89E-03	13.4	

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:46:42

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL10

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:53:02

Sample ID : 13 Sample quantity : 1.0068 gram

Sample type : RA Sample geometry :

Detector name : 044 Detector geometry:

Energy tolerance: 100.00 keV Half life ratio: 8.00 Errors propagated: Yes Systematic Error: 3.00 % Efficiency type: Average value Efficiencies at: Peak Energy

Abundance limit : 75.00

It	Energy	Area FWHM	Channel	Left	Pw %Err	Fit	Nuclides	Activity pCi/gram
0	4644.19*	70308.14	395.13	305	156 32.4		RA-226	0.876
Ö	5289.74*		614.74	522	176 26.9		RN-222	1.28
0	5781.84*	80236.55	786.04	717	162 30.2		PO-218	1.01

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:47:00

************************* Spectral File: ND AMS ARCHIVE S:S 0508094A-RA\$14 RA.CNF 14 * BATCH ID: 0508094A-RA SAMPLE ID: 17-AUG-2005 00:00 ALIOUOT: 1.074E+00 gram SAMPLE DATE: 045 DETECTOR NUMBER: VPSCR081705SL11 SAMPLE TITLE: 20.55% 27-AUG-2005 08:53 AVERAGE EFFICIENCY: ACO DATE: 90.24% RECOVERY: ELAPSED LIVE TIME: 10200. 0.00 * TRACER FWHM (kev): NONE TRACER ID: ROI TYPE: STANDARD LAMBDA VALUE: 0. 4.65 TRACER DPM AT SAMPLE DATE: CONFIDENCE FACTOR: 0.000 2.71 LLD CONSTANT: SAMPLE MATRIX: SOIL 25-AUG-2005 04:28 EFF CAL DATE: ENERGY CAL DATE: 25-AUG-2005 04:28 60000. BKG ELAPSED TIME: B 045 26AUG05 BKG FILENAME: 2.00 SAF: ***************************** NUCLIDE ACTIVITY SUMMARY MDC TPU/ERROR ACTIVITY NUCLIDE ENERGY NET BKG %ABN pCi/ AREA pCi/ gram 2-SIGMA gram 6.606E-01 2.701E-01 1.442E-01 PO-218 100.0 6003.0 49.66 0.34 6.367E-01 1.232E-01 99.9 2.646E-01 RN-222 5490.0 47.83 0.17 100.0 1.108E+00 3.534E-01 1.741E-01 RA-226 4785.0 83.32 0.68 ************************

Channel														
1: 15:	0	0 0	0 0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
29:	0	0	Ö	0	0	0	0	0	0	0	0	0	0	. 0
43: 57:	0 1	0 0	0 0	0 0	0 0	0 1	0 0	1 0						
71:	0	0	0	0	Ö	Ó	Ö	0	0	Ō	0	0	0	0
85:	0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0
99: 113:	0 0	0	0	0	1	0	0	0	Ó	1	0	ő	0	0
127:	0	0	0	1	1	0	0	0 0	0 0	1 0	0 0	1 0	0 0	0 0
141: 155:	0 1	0 0	0 0	0 0	0 1	0 0	0 0	2	0	0	0	0	Ö	0
169:	0	0	0	0	0	0	0	2	0	0 0	0 2	0 0	0 0	0 0
183: 197:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	1 0	1	1	0	0	0
211:	0	0	0	0	0	1	0	0	0	0 1	0 0	0 1	0 0	0 0
225: 239:	0 0	0 1	0 0	0 1	0 0	1 1	0	0 0	2 0	Ó	0	Ó	0	0
253:	1	0	0	0	1	0	0	0	0	0	0	0	0 0	0
267: 281:	0 0	0 0	2 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0	1	1
295:	0	1	0	0	0	0	0	0	0	1	0	0	0 0	0 0
309: 323:	1 0	0 0	0 1	0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0	1	2
337:	1	0	0	0	0	0	1	0	0	0	0	1	1	0
351: 365:	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 1	1 1	0 0	0 0	0
379:	0	1	0	1	0	1	0	1	0	1	0	0	0	3 0
393: 407:	0 0	0 2	0 0	1 1	0 1	0 0	0 0	0 0	0 0	1 0	0 0	0 1	0	0
421:	2	0	0	0	0	0	0	0	0	1	0	0 0	1 0	0 0
435: 449:	0 0	0 0	2 1	.1 1	0 0	0 0	0 0	0 0	1 0	1 0	0 0	0	0	0
463:	0	0	0	0	0	0	0 .	0	1	0	0	0	0 0	0 0
477: 491:	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0	0
505:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
519: 533:	0 0	0 0	0	0 0	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0
547:	0	1	0	0	0	0	0	0	1	0	0	0	0 0	1 1
561: 575:	0 0	0 0	1 0	0 0	0 0	0 1	0 0	0 0	0 0	1 0	0 0	0	0	0
589:	0	0	1	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0
603: 617:	0 1	0 0	0 0	0 1	0 0	0 1	1 1	1 0	0 0	0	0	0	0	0
631:	0	0	0	0 0	0	0	0 1	0 0	0	0	0 0	0	0 0	0 0
645: 659:	0 1	0 0	0	0	Ó	Ó	ó	0	0	Ô	Ö	Ö	Ö	Ō
673:	1	0	0	0	0 0	0 0	1 1	0 0	0 1	0 0	0 0	1 0	0 0	0 0
687: 701:	0 0	0 0	1 0	0 0	0	0	1	0	Ó	0	0	0	0	Ŏ
715: 729:	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 0	0 1	0 1	2 0	0 0 0 0
743:	0	0	0	0	0	0	0	0	0	0	0	0	1	Ö
757: 771:	0 0	0 0	0	0 0	0 0	0 1	0 0	0 1	0	0 0	0 1	0	1 1	1 0
785:	0	Ô	Ö	1	Ó	0	0	0	0	0	0	1	0	0 0 0 2 1
799: 813:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 1	0 0	U 2
827:	0	0	0	0	0	0	0	0	0	0	0	0	1	1
841: 855:	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 1	0 0	0	0 0	0
869:	1	0	Ō	0	0	0	0	1	0	0	0	0	0	0
883: 897:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 1	0 1	1 0	0 0	1 0	0
911:	0	0	0	0	0	0	0	0	0	, 0	0	0	0	0
925: 939:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0 0
953:	0	0	1	0	0	0	0	0	0	0	1	0	0 0	0 0
967: 981:	1 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0	0	0
995:	Ō	0	0	0	0	0	0	0	Ó	0	0	0	0 0	0
1009: 1023:	0 0	0 0	0	0	0	0	0	0	1	0	0	U	U	U
 •	-	-											TEG	

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:46:46.98

Detector ID: 45 Acquisition Start: 27-AUG-2005 08:53:19.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.00

Batch Id: 0508094A-RA Sample Id: 14

Sample Type: RA

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	0	4635.76 5295.22 5814.88	42 24 25	051	.8.97	386.17 610.17 791.24	516	176	4.12E-03 2.35E-03 2.45E-03	20.4	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:46:59.02

Acquisition Start: 26-AUG-2005 12:02:09.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk	It	Energy	Area	Bkgnd FWHN	M Channel	Left	Pw	Cts/Sec %Err	Fit
	•	4606.89 5275.86	4 1		376.50 3 603.50			6.67E-05 50.0 1.67E-05100.0	
_	-	5814.20	2	0 93.79	791.00	710	163	3.33E-05 70.7	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:46:59.30

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
_	-	4635.76*	83			386.17			8.17E-03		
2	0	5295.22*	48	051	.8.97	610.17	516	176	4.69E-03	20.5	
3	0	5814.88*	50	031	2.63	791.24	710	163	4.87E-03	20.1	

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:47:00

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL11

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:53:19

Sample ID : 14 Sample quantity : 1.0743 gram

Sample type : RA Sample geometry :

Detector name : 045 Detector geometry:

Energy tolerance: 100.00 keV Half life ratio: 8.00 Errors propagated: Yes Systematic Error: 3.00 % Efficiency type: Average value Efficiencies at: Peak Energy

Abundance limit : 75.00

Post-NID Peak Search Report

It	Energy	Area FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
0	4635.76* 5295.22* 5814.88*	83318.88 48518.97 50312.63	610.17	516	176	31.1 41.0 40.3		RA-226 RN-222 PO-218	1.00 0.575 0.596

Eberline Services Oak Ridge Laboratory

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:47:15

******************************* Spectral File: ND AMS ARCHIVE S:S 0508094A-RA\$15 RA.CNF 15 SAMPLE ID: 0508094A-RA BATCH ID: ALIQUOT: 1.086E+00 gram 17-AUG-2005 00:00 SAMPLE DATE: 046 DETECTOR NUMBER: SAMPLE TITLE: VPSCR081705SL12 20.82% AVERAGE EFFICIENCY: 27-AUG-2005 08:53 ACQ DATE: 88.02% RECOVERY: ELAPSED LIVE TIME: 10200. 0.00 TRACER FWHM (kev): NONE TRACER ID: STANDARD ROI TYPE: 0. LAMBDA VALUE: 4.65 TRACER DPM AT SAMPLE DATE: 0.000 CONFIDENCE FACTOR: 2.71 LLD CONSTANT: SAMPLE MATRIX: SOIL 25-AUG-2005 04:29 ENERGY CAL DATE: 25-AUG-2005 04:29 EFF CAL DATE: BKG ELAPSED TIME: 60000. B 046 26AUG05 BKG FILENAME: 1.81 SAF: ******************************* NUCLIDE ACTIVITY SUMMARY MDC TPU/ERROR NUCLIDE ENERGY NET BKG %ABN ACTIVITY gram AREA pCi/ gram 2-SIGMA pCi/ 3.202E-01 1.687E-01 1.001E+00 100.0 6003.0 75.17 0.85 PO-218 2.826E-01 1.455E-01 7.891E-01 RN-222 5490.0 59.22 0.51 99.9 9.572E-01 3.121E-01 1.453E-01 100.0 RA-226 4785.0 71.89 0.51 ******************************

-1,96714E-04 3,45486E+03 3.13726E+00 0009 Energy Offset: Energy Slope Energy Quad DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA\$15_RA.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 15 RA Sample Type: Time: Sample Time: Sample ID : 4500 Start Time: 27-AUG-2005 08:53 Real Time: 0 02:50:00.10 Live Time: 0 02:50:00.00 Title : 046 Sample Title: VPSCR081705SL12 4000 Spectrum 3500 က N squnoj

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 183: 197: 225: 239: 253: 267: 281: 295: 309: 309: 309: 309: 309: 309: 309: 309	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000110000001000000000000000000000000	000000000000000000000000000000000000000	000000010000011010000002001000000000000	000000000000000000000000000000000000000	000001000000000000001010001000000000000	000000001001000100001100000220002001000000	00000001000011010001110001110000000021000000	000001000100001010010010000100001000000

Eberline Services Oak Ridge Laboratory

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:47:04.36

Detector ID: 46 Acquisition Start: 27-AUG-2005 08:53:36.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.10

Batch Id: 0508094A-RA Sample Id: 15

Sample Type: RA

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4582.13	40			367.80			3.92E-03		
2	0	5300.66	33	046	51.18	611.82			3.24E-03		
3	0	5768.83	42	017	78.04	775.26	710	164	4.12E-03	15.4	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:47:13.57

Acquisition Start: 26-AUG-2005 12:02:12.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	0	4606.66 5276.55 5814.76	3 3 5	03	29.41	376.00 603.50 791.50	516	176	5.00E-05 5.00E-05 8.33E-05	57.7	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:47:13.81

Pk :	Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	0	4582.13* 5300.66* 5768.83*	72 59 75	04	61.18	367.80 611.82 775.26	516	176	7.05E-03 5.81E-03 7.37E-03	17.6	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:47:14

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL12

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:53:36

Sample ID : 15 Sample quantity : 1.0861 gram

Sample type : RA Sample geometry :

Detector name : 046 Detector geometry:

Energy tolerance: 100.00 keV Half life ratio: 8.00
Errors propagated: Yes Systematic Error: 3.00 %
Efficiency type: Average value Efficiencies at: Peak Energy

Abundance limit : 75.00

Post-NID Peak Search Report

It	Energy	Area FWHM	Channel	Left	Pw %E	rr Fit	Nuclides	Activity pCi/gram
Ö	4582.13* 5300.66* 5768.83*	72404.71 59461.18 75178.04	611.82	516	155 31 176 35 164 31	.1	RA-226 RN-222 PO-218	0.843 0.695 0.881

Eberline Services Oak Ridge Laboratory

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:47:38

****************************** Spectral File: ND AMS ARCHIVE S:S 0508094A-RA\$16 RA.CNF 16 SAMPLE ID: BATCH ID: 0508094A-RA ALIQUOT: 1.004E+00 gram 17-AUG-2005 00:00 SAMPLE DATE: 047 DETECTOR NUMBER: VPSCR081705SL13 SAMPLE TITLE: 21.54% AVERAGE EFFICIENCY: 27-AUG-2005 08:53 ACO DATE: 90.43% 10200. RECOVERY: ELAPSED LIVE TIME: 0.00 TRACER FWHM (kev): TRACER ID: NONE STANDARD ROI TYPE: 0. LAMBDA VALUE: 4.65 CONFIDENCE FACTOR: TRACER DPM AT SAMPLE DATE: 0.000 2.71 LLD CONSTANT: SAMPLE MATRIX: SOIL 25-AUG-2005 04:29 ENERGY CAL DATE: 25-AUG-2005 04:29 EFF CAL DATE: 60000. B 047 26AUG05 BKG ELAPSED TIME: BKG FILENAME: 2.20 SAF: ****************************** NUCLIDE ACTIVITY SUMMARY TPU/ERROR MDC ACTIVITY %ABN NUCLIDE ENERGY NET BKG pCi/ AREA pCi/ gram 2-SIGMA gram 4.740E-01 2.086E-01 100.0 1.748E+00 0.85 PO-218 6003.0 128.95 2.524E-01 4.343E-01 RN-222 5490.0 108.47 1.53 99.9 1.471E+00 1.185E+00 3.860E-01 1.798E-01 RA-226 87.49 0.51 100.0 4785.0 *************************

-1.82953E-04 3,41205E+03 3.08217E+00 9009 Offset: Slope : Energy Quad Energy Energy DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA\$16_RA.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 RA Sample Type: Time: Sample Time: Sample ID : 4500 Start Time: 27-AUG-2005 08:53 Real Time: 0 02:50:00.10 Live Time: 0 02:50:00.00 Title : 047 Sample Title: VPSCR081705SL13 4000 3500 Spectrum ന 0 N squnoj

Channel														
1: 15: 29: 43: 57: 71: 85: 99: 113: 127: 141: 155: 169: 183: 197: 211: 225: 239: 267: 281: 295: 309: 323: 337: 351: 407: 421: 435: 4491: 505: 519: 533: 547: 561: 575: 589: 631: 645: 659: 67: 757: 757: 757: 757: 759:	00000000001000110000110000021000000011100100	00001100001111000010000000000101100001022000000	000000000000000000000000000000000000000	000010000000010100001000000000000000000	000000000000000000000000000000000000000	000000001111102001110010010010000000000	10000010000011000000110000010200001000000	000000000000100010000100010001000010000101	010001000000011110100011000000010000000	000000011001100100000000000001100010010	0000000100000100000000000001001102000001000	000000000000000000000000000000000000000	001000100020010300010000001000000000000	0000000000010010010000000000110110101010
715: 729: 743: 757: 771: 785: 799: 813: 827: 841: 855: 869: 883:	1 1 0 0 0 0 0 0 0 1 1 1 2 0	0 0 1 0 0 1 0 1 0	0 1 1 1 1 0 0 0 0 0 0	1 0 0 0 0 0 1 0 0 0	0 0 1 0 1 0 0 0 0 2 0	1 0 0 0 1 1 0 0 0 1 2 0	0 1 0 0 0 0 0 0 0	0 1 0 0 0 0 1 1 1 0 0	0 1 0 1 0 0 0 0 2 0	0 0 1 0 0 0 0 0 1 1 1	0 0 1 0 0 0 0 0 1 1 1 3	1 0 2 0 0 0 0 1 0 0	0 0 1 0 0 0 0 0	0 2 0 0 0 1 0 1 2 0
897: 911: 925: 939: 953: 967: 981: 995: 1009:	0 0 0 0 1 0 1 0	1 2 0 0 0 1 0 0 0	1 0 1 0 0 0 0	0 0 2 1 0 0 0	0 0 1 0 0 1 0	1 0 1 1 0 0 0	1 0 1 1 0 0 0	1 0 1 1 0 1 0 0	0 0 1 0 0 0 0	0 0 0 0 0	1 0 0 0 0 0	0 0 1 0 2 0	0 1 1 0 0 0 0 0	1 0 0 1 0 0 0

Eberline Services Oak Ridge Laboratory

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:47:18.77

Detector ID: 47 Acquisition Start: 27-AUG-2005 08:53:52.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.10

Batch Id: 0508094A-RA Sample Id: 16

Sample Type: RA

Pk	It	Energy	Area	Bkgnd FWH	M Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4635.31	40	0226.5	4 406.70			3.92E-03		
2	0	5296.37	50	0289.7	2 635.32			4.90E-03		
3	0	5845.21	59	0424.5	7 830.36	737	166	5.78E-03	13.0	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:47:36.64

Acquisition Start: 26-AUG-2005 12:02:15.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0	4605.37 5275.50 5815.03	3 9 5	0376.02	396.50 628.00 819.50	539	179	5.00E-05 1.50E-04 8.33E-05	33.3	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:47:36.90

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2	Ō	4635.31* 5296.37* 5845.21*	87 108 129	028	9.72	406.70 635.32 830.36	539	179	8.58E-03 1.06E-02 1.26E-02	14.3	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:47:37

: MCA0: [AMSCOUNT] 00009067\$1 Configuration

: ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3 Analyses by

Sample title : VPSCR081705SL13

: 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:53:52 Sample date

Sample quantity : 1.0040 gram Sample ID : 16

Sample geometry : RA Sample type

Detector geometry: Detector name : 047

0.0% Elapsed real time: 0 02:50:00.10 Elapsed live time: 0 02:50:00.00

Half life ratio : 8.00 Energy tolerance : 100.00 keV Systematic Error : 3.00 % Errors propagated: Yes Efficiencies at : Peak Energy Efficiency type : Average value

Abundance limit : 75.00

Post-NID Peak Search Report

It	Energy	Area FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	Activity pCi/gram
Ō	4635.31* 5296.37* 5845.21*	87226.54 108289.72 129424.57	635.32	539	158 179 166	28.7		RA-226 RN-222 PO-218	1.07 1.33 1.58

Eberline Services Oak Ridge Laboratory

ALPHA SPECTROMETRY REPORT 29-AUG-2005 06:47:56

		••		
BATCH ID:	0508094A-RA	*	SAMPLE ID:	17
SAMPLE DATE:	17-AUG-2005 00:00	*	ALIQUOT: 1.055E+00	gram
SAMPLE TITLE:	VPSCR081705SL14	*	DETECTOR NUMBER:	048
ACQ DATE:	27-AUG-2005 08:54	*	AVERAGE EFFICIENCY:	20.31%
ELAPSED LIVE TI	ME: 10200.	*	RECOVERY:	77.96%
TRACER ID:	NONE	*	TRACER FWHM (kev):	0.00
LAMBDA VALUE:	0.	*	ROI TYPE: ST	ANDARD
TRACER DPM AT S	SAMPLE DATE: 0.000	*	CONFIDENCE FACTOR:	4.65
SAMPLE MATRIX:	SOIL	*	LLD CONSTANT:	2.71
	: 25-AUG-2005 04:29	*	EFF CAL DATE: 25-AUG-2005	04:29
BKG FILENAME:	B 048 26AUG05	*	BKG ELAPSED TIME:	60000.
	<u> </u>			

* SAF: 2.08

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	NET AREA	BKG	%ABN	ACTIVITY pCi/ gram	TPU/ERROR 2-SIGMA	MDC pCi/ gram
PO-218	6003.0	115.97	0.51	100.0	1.840E+00	5.102E-01	1.990E-01
RN-222	5490.0	106.46	1.70	99.9	1.690E+00	4.907E-01	2.896E-01
RA-226	4785.0	116.86	1.70	100.0	1.853E+00	5.148E-01	2.894E-01
****	*****	*****	****	****	****	****	*****

Analvst

879

Date

Reviewer

Date

-1.36902E-04 3.04247E+00 3,42171E+03 6000 Offset: Slope : Energy Quad Energy Energy DKA100:[ALPHA.ALUSR.ARCHIVE.S]S_0508094A-RA\$17_RA.CNF;1 5500 17-AUG-2005 00:00 Energy (keV) 5000 Sample Type: RA Time: Sample Time: Sample ID : 4500 Start Time: 27-AUG-2005 08:54 Real Time: 0 02:50:00.10 Live Time: 0 02:50:00.00 Title : 048 Sample Title: VPSCR081705SL14 4000 3500 Spectrum 0 ന N ₩ squnoj

Channel													
1:	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0	1 0
15: 29:	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0
43:	ò	Ŏ	Ŏ	ŏ	ŏ	ŏ	Ŏ	Ö	Ö	0	0	0	0
57:	0	0	0	0	0	0	0	0	0	0	0	0	0
71: 85:	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	1 0	0 0
99:	0	0	0	1	0	0	0	0	1	Õ	Ö	Ö	0
113:	ŏ	Ö	Ŏ	Ö	1	0	1	1	0	0	0	0	0
127:	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0
141: 155:	0 1	0 1	0 0	0 0	0	0 0	0 0	0 0	1	1	0	0	0
169:	Ó	Ó	0	Ö	Ö	Ŏ	Ö	1	Ö	1	0	0	0
183:	0	0	0	1	0	1	0	0	0	1	2	0	0
197:	1	0 0	1 0	0 0	0 0	1 0	0 0	0 0	0	0 0	0 0	. 0	0 1
211: 225:	1 0	0	0	1	0	0	0	0	1	2	Ö	Ö	ò
239:	1	1	0	0	0	0	0	0	2	0	0	0	0
253:	0	0	0	0	0	0	0	1	0	1 0	0	0 0	0 0
267: 281:	0 0	0 0	0 1	0 0	0 0	0 0	1 0	0 0	0 0	2	0	Ö	0
295:	Ŏ	Ö	ò	2	Ö	2	Ŏ	Ö	Ō	Ō	0	0	0
309:	1	0	0	0	0	1	0	0	0	1	1	1	1
323: 337:	1 0	0 1	0 0	2 0	0 0	1 0	0	0 0	0 1	0 0	0 1	0 0	2 0
351:	1	Ö	1	0	0	0	Ö	Ö	Ö	Ŏ	ò	Ŏ	Ö
365:	ò	1	0	0	0	0	0	1	0	0	0	0	0
379:	1	1	2	0	0	0	0	0	1 0	1 2	1 0	0 0	0 0
393: 407:	0 0	0	0 0	0 1	0 0	1 0	0 0	0 3	0	0	0	1	1
421:	Ö	ő	1	ò	Ö	1	Ŏ	1	ŏ	1	0	0	0
435:	0	0	0	2	3	0	0	1	1	0	0	0	2 0
449: 463:	0 0	0 0	0	0 0	0 0	2 0	1 0	0 0	0 1	0 0	0 0	0 0	0
463: 477:	0	1	0	0	Ö	Ö	0	Ö	ż	Ŏ	ŏ	0	0
491:	0	0	0	0	0	1	0	0	0	0	0	0	0
505:	0	0	1	0	0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0
519: 5 33:	0 0	0 0	0 0	0 1	0 1	0	0	0	0	0	i	Ö	Ö
547:	Ŏ	1	ŏ	ò	ò	Ŏ	Ŏ	0	1	0	0	0	1
561:	0	0	0	0	0	2	0	0	0	1	0	0 0	0 0
575: 589:	0 1	0 0	0 0	0 0	1 0	0 0	0 0	0 0	0 0	0 1	0 0	0	2
603:	Ó	2	0	0	Ö	Ö	ŏ	ŏ	ŏ	ò	1	ŏ	ō
617:	1	0	0	0	0	0	0	0	0	1	0	0	1
631: 645:	0 0	0 0	0 0	0	0 0	0 0	0 0	3 0	0 0	0 0	0 1	0 1	1 0
659:	0	1	0	1	1	0	0	Ö	Ö	Ö	i	i	Ŏ
673:	2	1	0	1	0	0	1	0	1	2	0	1	0
687:	0	0	0	0	0	1	1	0 0	1 2	1 0	0 0	0 0	0 0
701: 715:	1 1	0 0	1 1	1 0	0 0	0 1	0 0	0	. 2	1	Ö	Ŏ	ŏ
729:	Ö	Ö	Ö	Ŏ	Ŏ	Ó	0	Ô	0	1	0	1	2
743:	0	0	1	0	0	1	0	0	0	0 0	0 0	1 2	0 0
757: 771:	1 1	0 0	1 1	0 0	0 0	1 0	2 0	3 0	1 0	2	0	0	1
785:	Ó	3	Ö	1	1	Ŏ	ŏ	Ŏ	Ö	ō	0	0	1
799:	0	1	0	1	0	0	0	1	0	1	0	1	1
813: 827:	0 0	0 1	0 1	0 0	0 0	0 0	0 0	0 0	1 0	1 1	2	0 1	0 0
841:	0	Ó	i	0	1	1	1	Ö	Ö	ò	Ö	0	Ĭ
855:	0	0	0	0	1	0	0	0	0	0	1	0	0
869:	0	0	1	0	0 0	0 0	0 0	0 0	0 0	0 1	0 1	0 0	0 0
883: 897:	0 0	0 0	2 2	1 1	0	0	0	0	0	1	ò	Ö	0
911:	0	0	1	0	0	0	Ö	1	0	1	0	0	0
925:	0	0	0	0	1	0	0 0	0	1 0	0 1	2 2	0 0	2 1 0
939: 953:	1 0	0 0	2 0	1 0	0 1	0 0	0	2 0	1	0	0	1	0
967:	3	1	2	2	ó	0	0	0	0	Ō	0	Ó	0
981:	0	0	1	0	0	0	0	0	0	0	0	0	1
995: 1009:	0 0	.0 1	0 0	0 0	0 0	0 0	0 2	1 0	0 0	0 1	0 0	0 0	1 0
1009:	0	0	U	U	U	U	L	Ū	•	•	Ū	•	-
	-	-											374

Eberline Services Oak Ridge Laboratory

Gross Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:47:41.93

Detector ID: 48 Acquisition Start: 27-AUG-2005 08:54:10.01

Live Time: 0 02:50:00.00 Real Time: 0 02:50:00.10

Batch Id: 0508094A-RA Sample Id: 17

Sample Type: RA

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	4593.22	57	03	91.72	391.96			5.59E-03		
2	0	5331.06	52	04	36.59	646.37			5.10E-03		
3	0	5775.63	56	04	41.03	802.68	735	164	5.49E-03	13.4	

Background Counts Within Peak Regions Generated: 29-AUG-2005 06:47:54.72

Acquisition Start: 26-AUG-2005 12:02:18.01

Live Time: 0 16:40:00.00 Real Time: 0 16:40:00.10

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
_	-	4606.53	10			396.50			1.67E-04		
2	0	5274.08	10	04.	10.73	626.50			1.67E-04		
3	0	5814.62	3	029	98.16	816.50	735	164	5.00E-05	57.7	

Net Sample Counts Within Peak Regions Generated: 29-AUG-2005 06:47:54.97

Pk It	Energy	Area	Bkgnd FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
2 0	4593.22* 5331.06* 5775.63*	117 106 116	0436.59	391.96 646.37 802.68	538	178	1.15E-02 1.04E-02 1.14E-02	14.1	

Flag: "*" = Peak area was modified by background subtraction

VMS Nuclide Identification Report V3.0 Generated 29-AUG-2005 06:47:55

Configuration : MCA0: [AMSCOUNT] 00009067\$1

Analyses by : ROIPEAK V1.2, PEAKEFF V2.2, ENBACK V1.6, NID V3.3

Sample title : VPSCR081705SL14

Sample date : 17-AUG-2005 00:00:00 Acquisition date : 27-AUG-2005 08:54:10

Sample ID : 17 Sample quantity : 1.0550 gram

Sample type : RA Sample geometry :

Detector name : 048 Detector geometry:

Energy tolerance: 100.00 keV Half life ratio: 8.00
Errors propagated: Yes Systematic Error: 3.00 %
Efficiency type: Average value Efficiencies at: Peak Energy

Abundance limit : 75.00

Post-NID Peak Search Report

It	Energy	Area FWHM	Channel	Left Pw %Err	Fit	Nuclides	Activity pCi/gram
0 0	4593.22* 5331.06* 5775.63*	117391.72 106436.59 116441.03	646.37	318 158 26.9 538 178 28.2 735 164 26.8		RA-226 RN-222 PO-218	1.44 1.32 1.43

Jo 29.08

VAX/VMS Peak Search Report Generated 29-AUG-2005 04:54:52.91

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_050809401_GE1_BAFIL_87540.CNF

Analyses by : PEAK V16.9 PEAKEFF V2.2

Client ID : SPIKE

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 04:49:36 Sample ID : 0508094-01 Sample Quantity : 1.00000E+00 FILTER

Sample type : FILTER Sample Geometry : 0

Detector name : GE1 Detector Geometry: BAFIL

Start channel : 25 End channel : 4096

Critical level : No

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	1	62.25	94	30	1.92	62.08	58	14	3.13E-01	14.9	3.09E+00
2	1	67.00	22	52	1.92	66.83	58	14	7.31E-02	51.9	
3	0	81.78	295	46	2.04	81.61	77	11	9.85E-01	7.4	
4	0	94.73	11	49	1.54	94.56	90	8	3.71E-023	L12.2	
5	1	110.17	18	17	1.78	110.00	107	13	6.03E-02	40.7	1.11E+01
6	1	116.99	17	18	1.96	116.82	107	13	5.61E-02	48.8	
7	0	277.33	25	14	1.43	277.20	274	8	8.48E-02	32.2	
8	0	303.86	50	27	1.92	303.73	300	8	1.65E-01	22.9	
9	0	334.85	35	19	2.32	334.73	330		1.16E-01	29.8	
10	0	356.67	221	11	2.14	356.56	351	11	7.37E-01	7.3	
11	0	365.67	7	8	1.07	365.56	362		2.41E-02		
12	0	386.74	128	9	2.02	386.63	381	10	4.25E-01	10.0	
13	0	392.23	18	2	1.30	392.12	391		6.14E-02		
14	0	418.53	12	17	6.80	418.43	412	11	3.83E-02	74.5	
15	0	437.69	49	6	2.03	437.60	434		1.64E-01		
16	0	468.72	12	5	1.40	468.64	465		3.98E-02		
17	0	511.45	8	0	1.66	511.37	508		2.67E-02		
18	0	610.06	6	0	1.33	610.00	607	6	2.00E-02	40.8	

Summary of Nuclide Activity Page: 2
Sample ID: 0508094-01 Acquisition date: 29-AUG-2005 04:49:36

Total number of lines in spectrum 18
Number of unidentified lines 14

Number of lines tentatively identified by NID 4 22.22%

Nuclide Type : FISSION

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags

_ _ _ _ _ _ _

BA-133 10.50Y 1.00 4.450E+02 4.450E+02 0.660E+02 14.83

Total Activity: 4.450E+02 4.450E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags

TH-234 4.47E+09Y 1.00 3.792E+02 3.792E+02 1.143E+02 30.15

Total Activity: 3.792E+02 3.792E+02

Grand Total Activity: 8.243E+02 8.243E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Nuclide Line Activity Report

Sample ID : 0508094-01

Acquisition date: 29-AUG-2005 04:49:36

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

%Eff pCi/FILTER pCi/FILTER 1.963E+01 4.1110E+02 4.111E+02 %Error Status Nuclide Energy %Abn 22.45 OK BA-133 81.00 33.00* 54.34 4.915E+00 5.108E+02 5.108E+02 OK 302.84 17.80 6.963E+00 4.767E+02 4.767E+02 21.08 OK 356.01 60.00

Final Mean for 3 Valid Peaks = 4.450E+02+/-6.602E+01 (14.83%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 3.792E+02 3.792E+02 30.15 OK

Final Mean for 1 Valid Peaks = 3.792E+02+/-1.143E+02 (30.15%)

Flag: "*" = Keyline

Page: 4 Acquisition date : 29-AUG-2005 04:49:36

---- Identified Nuclides ----

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234	4.450E+02 3.792E+02	6.602E+01 1.143E+02	3.493E+01 1.147E+02	5.734E+00 3.677E+00	12.741 3.305
Non-I	Identified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
CO-57 CD-109 PA-231 PA-234 NP-237 AM-241	8.779E+00 1.369E+01 0.000E+00 0.000E+00 7.082E+01 1.067E+01	2.912E+01 3.152E+02 0.000E+00 0.000E+00 7.485E+01 6.567E+00	5.127E+01 4.340E+02 5.798E-01 3.752E-01 1.282E+02 1.274E+01	1.601E+01 5.614E+01 1.089E-02 7.051E-03 1.561E+01 2.989E-01	0.171 0.032 0.000 0.000 0.552 0.837

VAX/VMS Peak Search Report Generated 29-AUG-2005 05:01:08.54

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_050809402_GE1_BAFIL_87541.CNF

Analyses by : PEAK V16.9 PEAKEFF V2.2

Client ID : BLANK

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 04:55:50 Sample ID : 0508094-02 Sample Quantity : 1.00000E+00 FILTER

Sample type : FILTER Sample Geometry : 0

Detector name : GE1 Detector Geometry: BAFIL

Start channel : 25 End channel : 4096

Critical level : No

CIIC	JICAI	10,01	. 110				•				
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	2	58.54	16	5	2.10	58.37	57	14	5.50E-02	26.8	4.50E+00
2	2	62.39	97	27	2.11	62.22	57	14	3.22E-01	13.9	
3	2	66.19	48	42	2.11	66.02	57	14	1.60E-01	26.5	
4 5	0	81.60	315	33	2.08	81.43	76	10	1.05E+00	6.6	
5	0	94.85	39	38	5.36	94.68	88	13	1.29E-01	37.0	
6 7	0	113.16	111	54	2.09	113.00	107		3.70E-01		
7	4	161.00	16	26	2.66	160.84	156	17	5.42E-02	61.2	3.16E+00
8	4	167.00	9	18	2.66	166.84	156		2.97E-02		
9	0	209.32	12	7	1.26	209.18			4.10E-02		
10	0	255.77	7	6	1.34	255.64			2.46E-02		
11	0	277.20	16	15	1.17	277.07	274		5.18E-02		
12	1	303.29	55	4	1.80	303.17	299		1.84E-01		2.04E+00
13	1	307.31	10	11	2.08	307.19	299		3.41E-02		
14	4	334.29	26	4	2.12	334.18	331	15	8.60E-02	22.4	1.00E+00
15	4	338.73	9	3	2.78	338.61	331		3.08E-02		
16	4	343.26	8	1	2.78	343.15	331		2.77E-02		
17	3	353.11	9	1	1.91	353.00	352		2.97E-02	26.3	8.01E-01
18	3	356.71	215	3	2.12	356.60	352		7.18E-01	7.0	
19	3	364.75	7	3	2.54	364.64	352		2.29E-02		
20	3	384.38	57	5	2.55	384.27	381		1.90E-01		6.28E+00
21	3	387.58	50	15	2.01	387.48	381	10	1.67E-01	24.1	
22	0	416.88	31	3	6.41	416.78	413		1.05E-01		
23	0	437.80	40	3	3.00	437.71	435		1.35E-01		
24	0	469.12	7	5	1.55	469.03	465		2.33E-02		
25	0	510.91	12	0	1.35	510.83	507	7	4.00E-02	28.9	

Summary of Nuclide Activity Page: 2
Sample ID: 0508094-02 Acquisition date: 29-AUG-2005 04:55:50

Total number of lines in spectrum 25
Number of unidentified lines 20

Number of lines tentatively identified by NID 5 20.00%

Nuclide Type : FISSION

Wtd Mean Wtd Mean 2-Sigma Decay Corr Uncorrected Decay Corr 2-Sigma Error %Error Flags pCi/FILTER Decay pCi/FILTER Nuclide Hlife 0.646E+02 14.06 4.596E+02 10.50Y BA-133 1.00 4.596E+02 ______ _____

Total Activity: 4.596E+02 4.596E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr pCi/FILTER %Error Flags 2-Sigma Error Decay pCi/FILTER Nuclide Hlife 28.28 3.906E+02 1.104E+02 3.906E+02 TH-234 4.47E+09Y 1.00 53.76 1.00 5.166E+00 2.777E+00 5.166E+00 AM-241 432.20Y _ _ _ _ _ _ _ _ _____ 3.957E+02 Total Activity: 3.957E+02

Grand Total Activity: 8.553E+02 8.553E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Sample ID : 0508094-02

Acquisition date: 29-AUG-2005 04:55:50

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

Status pCi/FILTER pCi/FILTER %Error %Eff Nuclide Energy %Abn 1.963E+01 4.386E+02 21.40 OK 33.00* 4.387E+02 BA-133 81.00 43.02 OK 4.915E+00 5.683E+02 5.683E+02 302.84 17.80 6.963E+00 4.646E+02 4.646E+02 20.57 OK 356.01 60.00

Final Mean for 3 Valid Peaks = 4.596E+02+/-6.460E+01 (14.06%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 3.906E+02 3.906E+02 28.28 OK

Final Mean for 1 Valid Peaks = 3.906E+02+/-1.104E+02 (28.28%)

AM-241 59.54 35.90* 8.010E+01 5.166E+00 5.166E+00 53.76 OK

Final Mean for 1 Valid Peaks = 5.166E+00+/-2.777E+00 (53.76%)

Flag: "*" = Keyline

Page: 4
Acquisition date: 29-AUG-2005 04:55:50

---- Identified Nuclides ----

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234 AM-241	4.596E+02 3.906E+02 5.166E+00	6.460E+01 1.104E+02 2.777E+00	3.273E+01 1.177E+02 9.111E+00	5.372E+00 3.770E+00 2.137E-01	14.043 3.319 0.567
Non-	Identified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	. MDA error	Act/MDA

VAX/VMS Peak Search Report Generated 29-AUG-2005 05:06:55.58

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_050809403_GE1_BAFIL_87542.CNF

Analyses by : PEAK V16.9 PEAKEFF V2.2

Client ID : VPSCR081705SL01

Deposition Date :

Sample type : FILTER Sample Geometry : 0

Detector name : GE1 Detector Geometry: BAFIL

Start channel : 25 End channel : 4096

Critical level : No

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	61.77	81	73	1.32	61.59	58	8	2.70E-01	21.3	
2	4	81.57	302	28	2.25	81.39	77	11	1.01E+00	6.3	5.66E+00
3	4	85.26	13	27	2.58	85.08	77	11	4.48E-023	106.1	
4	0	94.07	20	21	1.74	93.90	90	6	6.51E-02	44.3	
5	0	112.19	67	44	1.53	112.03	108	9	2.23E-01	21.5	
6	0	125.05	14	10	1.89	124.88	122	6	4.58E-02	45.9	
7	0	277.20	36	3	2.30	277.07	274	7	1.20E-01	18.6	
8	0	304.00	57	23	1.88	303.88	299		1.92E-01	20.6	
9	6	334.58	32	14	3.36	334.46	330	12	1.06E-01	26.6	3.27E+00
10	6	339.44	12	2	2.50	339.32	330	12	3.93E-02	35.0	
11	0	356.71	230	2	2.10	356.60	354	7	7.66E-01	6.7	
12	1	384.17	37	5	1.91	384.06	382	9	1.24E-01	19.0	1.59E+00
13	1	387.18	83	15	2.11	387.08	382	-	2.76E-01		
14	1	412.10	6	4	1.93	412.00	410	14	2.09E-02	52.8	2.68E+00
15	1	419.10	7	3	1.93	419.00	410	14	2.36E-02	77.1	
16	0	437.71	47	0	2.20	437.62	433	9	1.57E-01	14.6	
17	0	468.59	9	2	2.06	468.50	466	6	3.08E-02	39.4	
18	0	511.41	7	2	1.23	511.33	508	7	2.37E-02	48.8	

Page : Summary of Nuclide Activity Acquisition date : 29-AUG-2005 05:01:38

Sample ID : 0508094-03

18 Total number of lines in spectrum Number of unidentified lines 13 Number of lines tentatively identified by NID 5

27.78%

Nuclide Type : FISSION

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr 2-Sigma Error %Error Flags Decay pCi/FILTER pCi/FILTER Nuclide Hlife 14.10 0.648E+02 4.595E+02 BA-133 10.50Y 1.00 4.595E+02 13.32E+01 212.58 6.266E+01 6.266E+01 NP-237 2.14E+06Y 1.00 _____ _____

5.221E+02 Total Activity: 5.221E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean Decay Corr 2-Sigma Uncorrected Decay Corr 2-Sigma Error %Error Flags Decay pCi/FILTER pCi/FILTER Nuclide Hlife 1.406E+02 42.87 1.00 3.279E+02 3.279E+02 TH-234 4.47E+09Y _____ _____

> Total Activity: 3.279E+02 3.279E+02

8.500E+02 Grand Total Activity: 8.500E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Sample ID : 0508094-03

Page: 3
Acquisition date: 29-AUG-2005 05:01:38

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma pCi/FILTER pCi/FILTER Status %Error Nuclide %Abn %Eff Energy 21.13 OK 33.00* 1.963E+01 4.195E+02 4.195E+02 BA-133 81.00 OK 4.915E+00 5.920E+02 5.920E+02 50.55 302.84 17.80 6.963E+00 4.955E+02 4.955E+02 20.19 OK 356.01 60.00

Final Mean for 3 Valid Peaks = 4.595E+02+/-6.478E+01 (14.10%)

NP-237 86.50 12.60* 1.532E+01 6.266E+01 6.266E+01 212.58 OK

Final Mean for 1 Valid Peaks = 6.266E+01+/-1.332E+02 (212.58%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma
Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status
TH-234 63.29 3.80* 5.865E+01 3.279E+02 3.279E+02 42.87 OK

Final Mean for 1 Valid Peaks = 3.279E+02+/-1.406E+02 (42.87%)

Flag: "*" = Keyline

Page: 4 Acquisition date : 29-AUG-2005 05:01:38

---- Identified Nuclides ----

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234 NP-237	4.595E+02 3.279E+02 6.266E+01	6.478E+01 1.406E+02 1.332E+02	4.016E+01 1.583E+02 1.348E+02	6.592E+00 5.071E+00 1.642E+01	11.442 2.072 0.465
Non-	Identified Nuclides				
	Key-Line				
Nuclide	Activity K.L. (pCi/FILTER) Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA

VAX/VMS Peak Search Report Generated 29-AUG-2005 05:13:08.88

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_050809404_GE1_BAFIL_87543.CNF

Analyses by : PEAK V16.9 PEAKEFF V2.2

Client ID : VPSCR081705SL01

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 05:07:55 Sample ID : 0508094-04 Sample Quantity : 1.00000E+00 FILTER

Sample type : FILTER Sample Geometry : 0

Detector name : GE1 Detector Geometry: BAFIL

Start channel : 25 End channel : 4096

Sensitivity : 3.00000 Gaussian : 10.00000

Critical level : No

O	22002		•								
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	4	62.57	108	32	2.43	62.39	58	13	3.61E-01	13.3	2.15E+00
2	4	66.56	41	31	1.88	66.38	58	13	1.35E-01	28.9	
3	0	81.69	301	47	2.11	81.52	77		1.00E+00	7.3	
4	2	112.49	61	28	2.06	112.33	106	15	2.03E-01	18.9	1.02E+00
5	2	117.04	15	25	2.16	116.88	106	15	5.04E-02	60.8	
6	0	176.94	20	17	2.62	176.79	173	8	6.67E-02	42.7	
7	0	276.21	31	6	2.68	276.08	270	12	1.03E-01	23.9	
8	4	303.36	50	12	1.81	303.24	300	13	1.68E-01	17.3	4.04E+00
9	4	308.10	13	17	2.76	307.98	300	13	4.46E-02	69.2	
10	Ō	335.45	18	16	1.91	335.33	331	7	6.02E-02	43.4	
11	3	352.92	8	6	2.10	352.81	350	11	2.68E-02	66.7	1.51E+00
12	3	356.80	195	4	1.93	356.69	350	11	6.51E-01	7.3	
13	3	384.74	51	4	2.55	384.63	381	14	1.71E-01	21.2	1.57E+00
14	3	387.48	51	4	2.55	387.38	381	14	1.70E-01	22.1	
15	3	391.65	19	3	2.56	391.54	381	14	6.26E-02	29.9	
16	0	417.70	25	16	4.83	417.60	411	13	8.31E-02	38.8	
17	Ö	437.58	41	0	2.03	437.49	434	7	1.37E-01	15.6	

Summary of Nuclide Activity Page: 2
Sample ID: 0508094-04 Acquisition date: 29-AUG-2005 05:07:55

Total number of lines in spectrum 17
Number of unidentified lines 13

Number of lines tentatively identified by NID 4 23.53%

Nuclide Type : FISSION

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr 2-Sigma Error %Error Flags Decay pCi/FILTER pCi/FILTER Nuclide Hlife 0.621E+02 4.269E+02 14.54 BA-133 10.50Y 1.00 4.269E+02 _____ _____

Total Activity: 4.269E+02 4.269E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags
TH-234 4.47E+09Y 1.00 4.382E+02 4.382E+02 1.191E+02 27.17

Total Activity : 4.382E+02 4.382E+02

Grand Total Activity: 8.651E+02 8.651E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Nuclide Line Activity Report

Sample ID : 0508094-04

Page: 3
Acquisition date: 29-AUG-2005 05:07:55

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

pCi/FILTER pCi/FILTER %Error Status Nuclide %Abn %Eff Energy 1.963E+01 4.184E+02 4.184E+02 22.27 OK 81.00 33.00* BA-133 OK 45.33 4.915E+00 5.187E+02 5.187E+02 302.84 17.80 OK 6.963E+00 4.215E+02 4.215E+02 21.10 356.01 60.00

Final Mean for 3 Valid Peaks = 4.269E+02+/-6.205E+01 (14.54%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 4.382E+02 4.382E+02 27.17 OK

Final Mean for 1 Valid Peaks = 4.382E+02+/-1.191E+02 (27.17%)

Flag: "*" = Keyline

Page: 4 Acquisition date : 29-AUG-2005 05:07:55

---- Identified Nuclides ----

Activity Nuclide (pCi/FILTER)		Act error	MDA (pCi/FILTER)	MDA error	Act/MDA						
BA-133 4.269E+02 TH-234 4.382E+02		6.205E+01 1.191E+02	3.285E+01 1.133E+02	5.393E+00 3.629E+00	12.994 3.870						
Non-Identified Nuclides											
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA						
CO-57 CD-109 PA-231 PA-234 NP-237 AM-241	7.503E+00 -2.639E+02 0.000E+00 0.000E+00 1.090E+01 6.987E+00	2.577E+01 2.786E+02 0.000E+00 0.000E+00 7.272E+01 6.915E+00	4.614E+01 3.960E+02 5.798E-01 3.752E-01 1.263E+02 1.262E+01	1.440E+01 5.122E+01 1.089E-02 7.051E-03 1.538E+01 2.962E-01	0.163 -0.667 0.000 0.000 0.086 0.553						

VAX/VMS Peak Search Report Generated 29-AUG-2005 05:18:36.36

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_050809405_GE1_BAFIL_87544.CNF

Analyses by : PEAK V16.9 PEAKEFF V2.2

Client ID : VPSCR081705SL02

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 05:13:20 Sample ID : 0508094-05 Sample Quantity : 1.00000E+00 FILTER

Sample type : FILTER Sample Geometry : 0

Detector name : GE1 Detector Geometry: BAFIL

Start channel : 25 End channel : 4096

Critical level : No

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	4	62.62	120	27	2.30	62.44	58	13	4.01E-01	11.9	2.08E+00
2	4	66.61	47	35	2.56	66.44	58	13	1.57E-01	29.9	
3	3	81.62	287	31	1.98	81.45	75	23	9.56E-01	6.6	1.25E+00
4	3	93.72	22	22	2.35	93.55	75	23	7.17E-02	48.1	
5	6	112.41	94	29	2.22	112.25	108	13	3.13E-01	13.8	1.96E+00
6	6	117.51	37	9	2.90	117.35	108	13	1.22E-01	27.4	
7	0	186.06	24	15	1.59	185.91	182	8	7.84E-02	35.8	
8	0	230.36	28	24	11.77	230.22	223	17	9.29E-02	45.4	
9	0	277.40	14	18	2.84	277.27	271	11	4.75E-02	64.7	
10	0	303.78	66	12	2.13	303.66	301	9	2.20E-01	15.4	
11	0	334.21	24	18	1.62	334.10	329	9	8.11E-02	37.3	
12	0	356.85	195	12	2.00	356.73	351	12	6.50E-01	8.0	
13	0	386.38	107	24	2.07	386.27	381	11	3.57E-01	13.2	
14	0	417.63	12	17	3.47	417.53	413	10	3.95E-02	68.7	
15	0	423.84	7	1	1.06	423.75	422	5	2.40E-02	43.0	
16	0	437.90	47	0	1.97	437.81	435	8	1.57E-01	14.6	
17	0	468.84	14	2	2.48	468.76	465	7	4.75E-02	30.6	

Summary of Nuclide Activity Page: 2
Sample ID: 0508094-05 Acquisition date: 29-AUG-2005 05:13:20

23.53%

Sample ID: 0508094-05 Acquisition date: 29-AUG-2005 05:13:

Total number of lines in spectrum 17
Number of unidentified lines 13
Number of lines tentatively identified by NID 4

Nuclide Type : FISSION

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr 2-Sigma Error %Error Flags Decay pCi/FILTER pCi/FILTER Hlife Nuclide 0.614E+02 14.59 4.212E+02 BA-133 10.50Y 1.00 4.212E+02 _____ _____

Total Activity : 4.212E+02 4.212E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags
TH-234 4.47E+09Y 1.00 4.863E+02 4.863E+02 1.181E+02 24.29

Total Activity : 4.863E+02 4.863E+02

Grand Total Activity: 9.074E+02 9.075E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Nuclide Line Activity Report

Sample ID : 0508094-05

Acquisition date: 29-AUG-2005 05:13:20

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

pCi/FILTER pCi/FILTER %Error Status %Eff Nuclide %Abn Energy 3.991E+02 21.45 OK 33.00* 1.963E+01 3.991E+02 BA-133 81.00 OK 4.915E+00 6.782E+02 6.783E+02 42.52 17.80 302.84 OK 6.963E+00 4.205E+02 4.205E+02 22.03 356.01 60.00

Final Mean for 3 Valid Peaks = 4.212E+02+/-6.144E+01 (14.59%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 4.863E+02 4.863E+02 24.29 OK

Final Mean for 1 Valid Peaks = 4.863E+02+/-1.181E+02 (24.29%)

Flag: "*" = Keyline

Sample ID: 0508094-05

Page: 4
Acquisition date: 29-AUG-2005 05:13:20

---- Identified Nuclides ----

Activity Nuclide (pCi/FILTER)		Act error	MDA (pCi/FILTER)	MDA error	Act/MDA					
BA-133 4.212E+02 TH-234 4.863E+02		6.144E+01 1.181E+02	3.913E+01 1.133E+02	6.424E+00 3.629E+00	10.763 4.294					
Non-Identified Nuclides										
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA					
CO-57 CD-109 PA-231 PA-234 NP-237 AM-241	3.328E+00 -5.220E+01 0.000E+00 0.000E+00 1.263E+01 9.518E+00	2.330E+01 2.460E+02 0.000E+00 0.000E+00 7.177E+01 6.267E+00	4.142E+01 4.514E+02 5.798E-01 3.752E-01 1.366E+02 1.217E+01	1.293E+01 5.839E+01 1.089E-02 7.051E-03 1.664E+01 2.854E-01	0.080 -0.116 0.000 0.000 0.092 0.782					

VAX/VMS Peak Search Report Generated 29-AUG-2005 05:26:30.39

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_050809406_GE1_BAFIL_87545.CNF

Analyses by : PEAK V16.9 PEAKEFF V2.2

Client ID : VPSCR081705SL03

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 05:21:12 Sample ID : 0508094-06 Sample Quantity : 1.00000E+00 FILTER

Sample type : FILTER Sample Geometry : 0

Detector name : GE1 Detector Geometry: BAFIL

Start channel : 25 End channel : 4096

Sensitivity : 3.00000 Gaussian : 10.00000

Critical level : No

JICAI	10,401	. 140								
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
0	61.73	52	59	1.84	61.56	59				
0	67.67	23	47	1.94	67.49	65	6	7.56E-02	54.2	
0	81.90	260	33	2.00	81.73	78	8	8.68E-01	7.1	
0	113.34	47	51	1.69	113.17	109	8	1.57E-01	30.3	
0	255.81	19	8	4.99	255.68	252	8	6.23E-02	35.1	
0	277.03	17	2	2.15	276.90	274	6	5.81E-02	26.5	
0	303.99	62	12	2.13	303.86	300				
0	317.68	8	2	2.12	317.56	315				
3	334.73	31	4	2.40	334.61	331				1.10E+00
3	339.11	12	3	2.53	339.00	331				
0	356.81	157	15	1.96	356.69	351				
2	384.47	30	12	2.32	384.36	381				2.16E+00
2	387.90	61	6	1.97	387.79	381				
2	392.02	11	4	2.32	391.91	381				
1	415.29	16	1	2.12	415.19	411				5.11E-01
1	419.29	15	4	2.12	419.19	411				
0	437.78	37	2	2.10	437.69	435				
0	468.69	8	4	1.87	468.60	464				
0	512.10	12	3	2.25	512.03	509				
0	610.72	6	0	1.47	610.67	608	5	2.00E-02	40.8	
	It 0 0 0 0 0 0 0 3 3 0 2 2 1 1 0 0 0	0 61.73 0 67.67 0 81.90 0 113.34 0 255.81 0 277.03 0 303.99 0 317.68 3 334.73 3 339.11 0 356.81 2 384.47 2 387.90 2 392.02 1 415.29 1 419.29 0 437.78 0 468.69 0 512.10	It Energy Area 0 61.73 52 0 67.67 23 0 81.90 260 0 113.34 47 0 255.81 19 0 277.03 17 0 303.99 62 0 317.68 8 3 334.73 31 3 339.11 12 0 356.81 157 2 384.47 30 2 387.90 61 2 392.02 11 1 415.29 16 1 419.29 15 0 437.78 37 0 468.69 8 0 512.10 12	It Energy Area Bkgnd 0 61.73 52 59 0 67.67 23 47 0 81.90 260 33 0 113.34 47 51 0 255.81 19 8 0 277.03 17 2 0 303.99 62 12 0 317.68 8 2 3 334.73 31 4 3 339.11 12 3 0 356.81 157 15 2 384.47 30 12 2 387.90 61 6 2 392.02 11 4 1 419.29 15 4 0 437.78 37 2 0 468.69 8 4 0 512.10 12 3	It Energy Area Bkgnd FWHM 0 61.73 52 59 1.84 0 67.67 23 47 1.94 0 81.90 260 33 2.00 0 113.34 47 51 1.69 0 255.81 19 8 4.99 0 277.03 17 2 2.15 0 303.99 62 12 2.13 0 317.68 8 2 2.12 3 334.73 31 4 2.40 3 339.11 12 3 2.53 0 356.81 157 15 1.96 2 384.47 30 12 2.32 2 387.90 61 6 1.97 2 392.02 11 4 2.32 1 415.29 16 1 2.12 0 437.78 37 2 2.10 0 468.69 8 4 1.87	It Energy Area Bkgnd FWHM Channel 0 61.73 52 59 1.84 61.56 0 67.67 23 47 1.94 67.49 0 81.90 260 33 2.00 81.73 0 113.34 47 51 1.69 113.17 0 255.81 19 8 4.99 255.68 0 277.03 17 2 2.15 276.90 0 303.99 62 12 2.13 303.86 0 317.68 8 2 2.12 317.56 3 334.73 31 4 2.40 334.61 3 339.11 12 3 2.53 339.00 0 356.81 157 15 1.96 356.69 2 384.47 30 12 2.32 384.36 2 387.90 61 6 1.97 387.79	It Energy Area Bkgnd FWHM Channel Left 0 61.73 52 59 1.84 61.56 59 0 67.67 23 47 1.94 67.49 65 0 81.90 260 33 2.00 81.73 78 0 113.34 47 51 1.69 113.17 109 0 255.81 19 8 4.99 255.68 252 0 277.03 17 2 2.15 276.90 274 0 303.99 62 12 2.13 303.86 300 0 317.68 8 2 2.12 317.56 315 3 334.73 31 4 2.40 334.61 331 3 339.11 12 3 2.53 339.00 331 0 356.81 157 15 1.96 356.69 351 2 <t< td=""><td>It Energy Area Bkgnd FWHM Channel Left Pw 0 61.73 52 59 1.84 61.56 59 7 0 67.67 23 47 1.94 67.49 65 6 0 81.90 260 33 2.00 81.73 78 8 0 113.34 47 51 1.69 113.17 109 8 0 255.81 19 8 4.99 255.68 252 8 0 277.03 17 2 2.15 276.90 274 6 0 303.99 62 12 2.13 303.86 300 10 0 317.68 8 2 2.12 317.56 315 6 3 334.73 31 4 2.40 334.61 331 11 3 356.81 157 15 1.96 356.69 351 12</td><td>It Energy Area Bkgnd FWHM Channel Left Pw Cts/Sec 0 61.73 52 59 1.84 61.56 59 7 1.72E-01 0 67.67 23 47 1.94 67.49 65 6 7.56E-02 0 81.90 260 33 2.00 81.73 78 8 8.68E-01 0 113.34 47 51 1.69 113.17 109 8 1.57E-01 0 255.81 19 8 4.99 255.68 252 8 6.23E-02 0 277.03 17 2 2.15 276.90 274 6 5.81E-02 0 303.99 62 12 2.13 303.86 300 10 2.07E-01 0 317.68 8 2 2.12 317.56 315 6 2.75E-02 3 339.11 12 3 2.53 339.00</td><td>It Energy Area Bkgnd FWHM Channel Left Pw Cts/Sec %Err 0 61.73 52 59 1.84 61.56 59 7 1.72E-01 28.2 0 67.67 23 47 1.94 67.49 65 6 7.56E-02 54.2 0 81.90 260 33 2.00 81.73 78 8 8.68E-01 7.1 0 113.34 47 51 1.69 113.17 109 8 1.57E-01 30.3 0 255.81 19 8 4.99 255.68 252 8 6.23E-02 35.1 0 277.03 17 2 2.15 276.90 274 6 5.81E-02 26.5 0 303.99 62 12 2.13 303.86 300 10 2.07E-01 16.5 0 317.68 8 2 2.12 317.56 315 6 2.75</td></t<>	It Energy Area Bkgnd FWHM Channel Left Pw 0 61.73 52 59 1.84 61.56 59 7 0 67.67 23 47 1.94 67.49 65 6 0 81.90 260 33 2.00 81.73 78 8 0 113.34 47 51 1.69 113.17 109 8 0 255.81 19 8 4.99 255.68 252 8 0 277.03 17 2 2.15 276.90 274 6 0 303.99 62 12 2.13 303.86 300 10 0 317.68 8 2 2.12 317.56 315 6 3 334.73 31 4 2.40 334.61 331 11 3 356.81 157 15 1.96 356.69 351 12	It Energy Area Bkgnd FWHM Channel Left Pw Cts/Sec 0 61.73 52 59 1.84 61.56 59 7 1.72E-01 0 67.67 23 47 1.94 67.49 65 6 7.56E-02 0 81.90 260 33 2.00 81.73 78 8 8.68E-01 0 113.34 47 51 1.69 113.17 109 8 1.57E-01 0 255.81 19 8 4.99 255.68 252 8 6.23E-02 0 277.03 17 2 2.15 276.90 274 6 5.81E-02 0 303.99 62 12 2.13 303.86 300 10 2.07E-01 0 317.68 8 2 2.12 317.56 315 6 2.75E-02 3 339.11 12 3 2.53 339.00	It Energy Area Bkgnd FWHM Channel Left Pw Cts/Sec %Err 0 61.73 52 59 1.84 61.56 59 7 1.72E-01 28.2 0 67.67 23 47 1.94 67.49 65 6 7.56E-02 54.2 0 81.90 260 33 2.00 81.73 78 8 8.68E-01 7.1 0 113.34 47 51 1.69 113.17 109 8 1.57E-01 30.3 0 255.81 19 8 4.99 255.68 252 8 6.23E-02 35.1 0 277.03 17 2 2.15 276.90 274 6 5.81E-02 26.5 0 303.99 62 12 2.13 303.86 300 10 2.07E-01 16.5 0 317.68 8 2 2.12 317.56 315 6 2.75

Summary of Nuclide Activity Page: 2
Sample ID: 0508094-06 Acquisition date: 29-AUG-2005 05:21:12

Total number of lines in spectrum 20
Number of unidentified lines 16
Number of lines tentatively identified by NID 4

Number of lines tentatively identified by NID 4 20.00%

Nuclide Type : FISSION

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr 2-Sigma Error %Error Flags Decay pCi/FILTER pCi/FILTER Nuclide Hlife 3.617E+02 0.560E+02 15.47 1.00 3.617E+02 BA-133 10.50Y _____ _ _ _ _ _ _ _ 3.617E+02 Total Activity: 3.617E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags
TH-234 4.47E+09Y 1.00 2.087E+02 2.087E+02 1.182E+02 56.66

Total Activity: 2.087E+02 2.087E+02

Grand Total Activity: 5.704E+02 5.704E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Sample ID : 0508094-06

Acquisition date: 29-AUG-2005 05:21:12

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

pCi/FILTER pCi/FILTER %Error Status %Eff %Abn Nuclide Energy OK 3.621E+02 22.06 33.00* 1.963E+01 3.621E+02 BA-133 81.00 44.14 OK 6.391E+02 4.915E+00 6.390E+02 302.84 17.80 24.14 OK 3.381E+02 6.963E+00 3.381E+02 356.01 60.00

Final Mean for 3 Valid Peaks = 3.617E+02+/-5.596E+01 (15.47%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 2.087E+02 2.087E+02 56.66 OK

Final Mean for 1 Valid Peaks = 2.087E+02+/-1.182E+02 (56.66%)

Page: 4 Combined Activity-MDA Report Sample ID: 0508094-06 Acquisition date : 29-AUG-2005 05:21:12

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234	3.617E+02 2.087E+02	5.596E+01 1.182E+02	3.586E+01 1.247E+02	5.887E+00 3.994E+00	10.088 1.674
Non-I	dentified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
CO-57 CD-109 PA-231 PA-234 NP-237 AM-241	-1.405E+01 -1.263E+02 0.000E+00 0.000E+00 2.028E+01	2.156E+01 2.549E+02 0.000E+00 0.000E+00 5.769E+01	3.449E+01 3.980E+02 5.798E-01 3.752E-01 1.069E+02 1.145E+01	1.077E+01 5.149E+01 1.089E-02 7.051E-03 1.302E+01 2.686E-01	-0.407 -0.317 0.000 0.000 0.190 0.914

VAX/VMS Peak Search Report Generated 29-AUG-2005 05:32:41.58

: DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_050809407_GE1_BAFIL_87547.CNF Configuration

Analyses by : PEAK V16.9 PEAKEFF V2.2

: VPSCR081705SL04 Client ID

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 05:27:25 Sample Quantity : 1.00000E+00 FILTER : 0508094-07

Sample ID Sample type Sample Geometry : 0 : FILTER

Detector name : GE1 Detector Geometry: BAFIL

Elapsed real time: 0 00:05:00.06 0.0% Elapsed live time: 0 00:05:00.00

End channel : 4096 Start channel : 25

Sensitivity : 3.00000 Critical level : No Gaussian : 10.00000

CLI	TCal	Tever	; 100								
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	2	62.43	79	29	2.11	62.25	58		2.62E-01		1.29E+00
2	2	66.54	36	25	2.11	66.37	58	15	1.21E-01	32.9	
3	0	81.78	276	58	2.07	81.61	77		9.19E-01	7.8	
4	1	112.34	77	20	1.89	112.18	108	16	2.56E-01	14.5	1.35E+00
5	ī	116.99	20	19	1.96	116.82	108	16	6.83E-02	40.0	
6	0	277.32	20	10	1.49	277.19	273	7	6.73E-02	34.4	
7	0	303.26	61	10	1.83	303.13	298	9	2.04E-01	16.0	
8	2	334.26	39	0	2.04	334.15	331	13	1.29E-01	16.1	7.21E-01
9	2	338.15	10	0	2.30	338.04	331	13	3.29E-02	52.6	
10	0	356.85	178	5	1.91	356.74	352	10	5.93E-01	7.9	
11	0	365.75	16	6	2.83	365.64	362	8	5.23E-02	37.1	
12	Õ	386.52	110	18	2.07	386.42	382	9	3.66E-01	11.8	
13	0	392.68	17	4	1.83	392.58	391	6	5.62E-02	34.8	
14	0	419.42	12	11	1.56	419.32	417	7	4.16E-02	53.4	
15	Ō	437.70	38	2	1.99	437.60	433	8	1.26E-01	17.6	
16	Ō	468.60	6	4	1.12	468.52	466	6	2.13E-02	59.5	
17	Ō	512.13	6	2	2.08	512.05	508	7	2.10E-02	52.7	

Summary of Nuclide Activity Page: 2
Sample ID: 0508094-07 Acquisition date: 29-AUG-2005 05:27:25

Total number of lines in spectrum 17
Number of unidentified lines 13

Number of lines tentatively identified by NID 4 23.53%

---**-**

Nuclide Type : FISSION

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags

BA-133 10.50Y 1.00 3.954E+02 3.954E+02 0.593E+02 15.01

Total Activity: 3.954E+02 3.954E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags

_ _ _ _ _ _ _

TH-234 4.47E+09Y 1.00 3.182E+02 3.182E+02 1.028E+02 32.29

Total Activity: 3.182E+02 3.182E+02

Grand Total Activity: 7.136E+02 7.136E+02

Flags: "K" = Keyline not found "M" = Manually accepted

_ _ _ _ _ _ _ _

"E" = Manually edited "A" = Nuclide specific abn. limit

Sample ID : 0508094-07

Page: 3
Acquisition date: 29-AUG-2005 05:27:25

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

Status pCi/FILTER pCi/FILTER %Error %Eff Nuclide Energy %Abn OK 3.836E+02 23.03 33.00* 1.963E+01 3.836E+02 BA-133 81.00 OK 6.315E+02 43.35 4.915E+00 6.315E+02 302.84 17.80 OK 6.963E+00 3.838E+02 3.838E+02 21.83 60.00 356.01

Final Mean for 3 Valid Peaks = 3.954E+02+/-5.935E+01 (15.01%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 3.182E+02 3.182E+02 32.29 OK

Final Mean for 1 Valid Peaks = 3.182E+02+/-1.028E+02 (32.29%)

Combined Activity-MDA Report Sample ID: 0508094-07

Page: 4 Acquisition date : 29-AUG-2005 05:27:25

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234	3.954E+02 3.182E+02	5.935E+01 1.028E+02	3.913E+01 1.102E+02	6.424E+00 3.531E+00	10.104 2.888
Non-I	dentified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
CO-57 CD-109 PA-231 PA-234 NP-237 AM-241	-8.501E+00 -2.769E+02 0.000E+00 0.000E+00 -1.837E+01 6.967E+00	2.601E+01 2.834E+02 0.000E+00 0.000E+00 7.267E+01 6.740E+00	4.174E+01 4.008E+02 5.798E-01 3.752E-01 1.185E+02 1.238E+01	1.303E+01 5.185E+01 1.089E-02 7.051E-03 1.443E+01 2.904E-01	-0.204 -0.691 0.000 0.000 -0.155 0.563

Configuration : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP_050809408_GE1_BAFIL_87548.CNF

Analyses by : PEAK V16.9 PEAKEFF V2.2

Client ID : VPSCR081705SL05

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 05:33:44 Sample ID : 0508094-08 Sample Quantity : 1.00000E+00 FILTER

Sample type : FILTER Sample Geometry : 0

Detector name : GE1 Detector Geometry: BAFIL

Start channel : 25 End channel : 4096

Critical level : No

CIIC	LICAL	16,461	. 110								
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	62.31	64	39	1.47	62.13	59	6	2.15E-01	19.7	
2	0	81.79	265	22	2.07	81.61	77	10	8.84E-01	7.0	
3	0	93.57	10	21	1.98	93.40	90	7	3.33E-02	82.3	
4	5	112.56	67	38	2.22	112.39	108	13	2.22E-01	19.0	2.12E+00
5	5	117.26	15	33	2.88	117.09	108	13	5.09E-02	71.2	
6	0	277.20	17	11	1.32	277.07	274	7	5.74E-02	39.6	
7	0	304.51	30	29	2.11	304.39	299	9	1.00E-01	37.2	
8	0	334.60	24	4	1.87	334.48	332	5	8.08E-02	23.6	
9	0	356.81	188	11	2.00	356.70	352	9	6.26E-01	8.0	
10	0	386.39	99	19	4.37	386.28	382	9	3.31E-01	12.7	
11	0	392.02	18	4	1.48	391.92	391	4	5.85E-02	31.2	
12	0	418.23	19	11	3.14	418.13	411	15	6.22E-02	49.8	
13	0	437.93	30	0	1.22	437.83	435	7	1.00E-01	18.3	
14	0	468.50	11	4	2.10	468.41	464	8	3.67E-02	43.6	

Summary of Nuclide Activity Page: 2
Sample ID: 0508094-08 Acquisition date: 29-AUG-2005 05:33:44

Total number of lines in spectrum 14
Number of unidentified lines 10

Number of lines tentatively identified by NID 4 28.57%

Nuclide Type : FISSION

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr pCi/FILTER 2-Sigma Error %Error Flags Decay pCi/FILTER Nuclide Hlife 0.582E+02 15.28 1.00 3.809E+02 3.810E+02 10.50Y BA-133 _____ _____

Total Activity: 3.809E+02 3.810E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags
TH-234 4.47E+09Y 1.00 2.604E+02 2.604E+02 1.036E+02 39.79

Total Activity: 2.604E+02 2.604E+02

Grand Total Activity: 6.413E+02 6.413E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Sample ID : 0508094-08

Page: 3
Acquisition date: 29-AUG-2005 05:33:44

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

pCi/FILTER pCi/FILTER Status %Eff %Error Nuclide Energy %Abn 21.92 OK 1.963E+01 3.690E+02 3.690E+02 BA-133 81.00 33.00* 79.97 OK 4.915E+00 3.091E+02 3.091E+02 302.84 17.80 OK 6.963E+00 4.048E+02 4.048E+02 22.01 356.01 60.00

Final Mean for 3 Valid Peaks = 3.810E+02+/-5.820E+01 (15.28%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 2.604E+02 2.604E+02 39.79 OK

Final Mean for 1 Valid Peaks = 2.604E+02+/-1.036E+02 (39.79%)

Sample ID: 0508094-08

Page: 4
Acquisition date: 29-AUG-2005 05:33:44

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234	3.810E+02 2.604E+02	5.820E+01 1.036E+02	3.643E+01 1.451E+02	5.980E+00 4.651E+00	10.458 1.794
Non-I	dentified Nuclides	-			
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
CO-57 CD-109 PA-231 PA-234 NP-237 AM-241	1.408E+01 4.825E+01 0.000E+00 0.000E+00 4.992E+01 5.596E+00	2.852E+01 2.625E+02 0.000E+00 0.000E+00 7.753E+01 5.851E+00	5.142E+01 3.844E+02 5.798E-01 3.752E-01 1.244E+02 1.093E+01	1.605E+01 4.972E+01 1.089E-02 7.051E-03 1.515E+01 2.563E-01	0.274 0.126 0.000 0.000 0.401 0.512

VAX/VMS Peak Search Report Generated 29-AUG-2005 05:44:55.54

: DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_050809409_GE1_BAFIL_87549.CNF Configuration

Analyses by : PEAK V16.9 PEAKEFF V2.2

: VPSCR081705SL06 Client ID

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 05:39:37 Sample Quantity : 1.00000E+00 FILTER Sample ID : 0508094-09

Sample Geometry : 0 Sample type : FILTER

Detector name : GE1 Detector Geometry: BAFIL

Elapsed real time: 0 00:05:00.07 0.0% Elapsed live time: 0 00:05:00.00

End channel : 4096 Start channel : 25

: 10.00000 Gaussian Sensitivity : 3.00000

Critical level : No

CLI	LICAL	Tever	: 110								
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	62.33	81	68	2.09	62.15	58	8	2.70E-01	20.8	
2	0	81.77	291	41	1.81	81.60	76		9.69E-01	7.3	
3	2	93.54	15	17	2.14	93.37	90		4.92E-02		2.40E+00
4	2	98.84	11	22	2.15	98.67	90		3.77E-02		
4 5	2	107.54	15	2	2.15	107.37	106		4.86E-02		2.24E+00
6	2	112.15	59	15	2.16	111.98	106		1.98E-01		
6 7	2	115.79	16	22	2.16	115.62	106		5.50E-02		
8 9	0	251.77	3	17	2.43	251.64	245		1.10E-022		
9	0	277.11	35	2	1.84	276.98	274		1.15E-01		
10	3	303.34	43	9	1.95	303.22	299		1.42E-01		1.69E+00
11	3	307.93	20	9	2.51	307.81	299		6.56E-02		
12	0	334.81	19	14	1.85	334.69	331		6.47E-02		
13	2	353.11	10	0	1.91	353.00	351		3.37E-02		1.70E+00
14	2	356.72	189	0	2.05	356.60	351		6.31E-01	7.3	
15	0	366.63	8	6	1.51	366.52	363		2.54E-02		
16	2	384.51	48	9	2.32	384.40	380		1.60E-01		1.31E+00
17	2	387.75	73	6	2.11	387.65	380		2.43E-01		
18	2	391.51	22	4	2.32	391.40	380		7.30E-02		
19	0	415.33	7	12	1.19	415.23	412		2.40E-02		
20	1	433.09	6	0	1.94	433.00	432		2.05E-02		3.95E-01
21	1	437.29	35	0	2.13	437.19	432		1.17E-01		
22	0	468.48	14	2	1.58	468.39	466		4.73E-02		
23	0	511.81	6	2	1.08	511.73	509	6	2.10E-02	50.7	

Summary of Nuclide Activity Page: 2
Sample ID: 0508094-09 Acquisition date: 29-AUG-2005 05:39:37

Total number of lines in spectrum 23
Number of unidentified lines 19

Number of lines tentatively identified by NID 4 17.39%

Nuclide Type : FISSION

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags BA-133 10.50Y 1.00 4.091E+02 4.091E+02 0.598E+02 14.61

BA-133 10.50Y 1.00 4.091E+02 4.091E+02 0.598E+02 14.6

Total Activity: 4.091E+02 4.091E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags

_ _ _ _ _ _ _ _

TH-234 4.47E+09Y 1.00 3.275E+02 3.275E+02 1.375E+02 41.98

Total Activity: 3.275E+02 3.275E+02

Grand Total Activity : 7.366E+02 7.366E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Sample ID : 0508094-09

Acquisition date: 29-AUG-2005 05:39:37

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

Status pCi/FILTER pCi/FILTER %Error %Eff Nuclide Energy %Abn 22.27 OK 81.00 33.00* 4.046E+02 BA-133 4.915E+00 4.391E+02 OK 302.84 4.391E+02 49.50 17.80 4.085E+02 21.01 OK 356.01 60.00 6.963E+00 4.085E+02

Final Mean for 3 Valid Peaks = 4.091E+02+/-5.976E+01 (14.61%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 3.275E+02 3.275E+02 41.98 OK

Final Mean for 1 Valid Peaks = 3.275E+02+/-1.375E+02 (41.98%)

Page: 4
Acquisition date: 29-AUG-2005 05:39:37

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234	4.091E+02 3.275E+02	5.976E+01 1.375E+02	3.586E+01 1.629E+02	5.887E+00 5.220E+00	11.408 2.011
Non-	Identified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
CO-57 CD-109 PA-231 PA-234 NP-237 AM-241	8.930E+00 -5.760E+01 0.000E+00 0.000E+00 6.449E+01	2.518E+01 2.893E+02 0.000E+00 0.000E+00 7.396E+01	4.562E+01 3.753E+02 5.798E-01 3.752E-01 1.254E+02	1.424E+01 4.855E+01 1.089E-02 7.051E-03 1.527E+01 3.066E-01	0.196 -0.153 0.000 0.000 0.514 0.499

VAX/VMS Peak Search Report Generated 29-AUG-2005 05:50:25.96

Configuration : DKA100: [GAMMA.SCUSR.ARCHIVE] SMP_050809410_GE1_BAFIL_87550.CNF

Analyses by : PEAK V16.9 PEAKEFF V2.2

: VPSCR081705SL07 Client ID

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 05:45:09 Sample Quantity : 1.00000E+00 FILTER
Sample Geometry : 0 : 0508094-10 Sample ID

Sample type : FILTER

Detector name : GE1 Detector Geometry: BAFIL

Elapsed real time: 0 00:05:00.06 0.0% Elapsed live time: 0 00:05:00.00

End channel : 4096 Start channel : 25

: 10.00000 Gaussian : 3.00000 Sensitivity

Critical level : No

O = = (
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	3	62.75	53	33	2.32	62.58	58	12	1.75E-01	24.5	2.08E+00
2	3	65.99	38	34	2.32	65.82	58	12	1.26E-01	36.5	
3	Ō	81.72	254	27	2.06	81.55	77	10	8.48E-01	7.4	
4	Ö	92.37	28	16	2.63	92.20	87		9.43E-02		
5	3	109.33	10	31	2.37	109.16	106		3.42E-023		4.60E+00
6	3	112.58	55	30	2.37	112.41	106		1.83E-01		
7	0	141.61	23	24	5.96	141.45	134		7.53E-02		
8	0	277.01	15	11	1.95	276.88	272		4.99E-02		
9	0	294.76	14	5	5.62	294.63	290		4.50E-02		
10	3	303.50	66	4	2.33	303.38	299		2.20E-01		1.85E+00
11	3	308.02	11	3	2.51	307.90	299		3.56E-02		
12	0	334.65	24	13	2.07	334.54	331		8.06E-02		
13	0	356.76	187	3	2.30	356.64	350		6.22E-01	7.5	
14	2	384.35	40	4	2.32	384.25	381		1.34E-01		3.22E+00
15	2	387.50	49	3	1.92	387.40	381	14	1.65E-01		
16	2	391.51	16	4	2.32	391.40	381	14			
17	0	419.55	10	12	1.77	419.45	416		3.20E-02		
18	0	437.92	35	7	2.32	437.83	434		1.17E-01		
19	0	511.28	8	1	1.28	511.21	509	5	2.52E-02	43.0	

Summary of Nuclide Activity

Acquisition date : 29-AUG-2005 05:45:09 Sample ID : 0508094-10

19 Total number of lines in spectrum

15 Number of unidentified lines

Number of lines tentatively identified by NID 21.05% 4

Nuclide Type : FISSION

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr

2-Sigma pCi/FILTER 2-Sigma Error %Error Flags Nuclide Hlife Decay pCi/FILTER

3.896E+02 14.61 0.569E+02 BA-133 1.00 3.896E+02 10.50Y

> Total Activity: 3.896E+02 3.896E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma

pCi/FILTER 2-Sigma Error %Error Flags Decay pCi/FILTER Nuclide Hlife

1.045E+02 49.20 2.124E+02 2.124E+02 TH-234 4.47E+09Y 1.00

> _____ Total Activity: 2.124E+02 2.124E+02

6.020E+02 Grand Total Activity: 6.020E+02

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Sample ID : 0508094-10

Page: 3
Acquisition date: 29-AUG-2005 05:45:09

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

pCi/FILTER pCi/FILTER Status %Error %Eff Nuclide Energy %Abn 33.00* 1.963E+01 3.537E+02 3.537E+02 22.40 OK BA-133 81.00 39.88 OK 4.915E+00 6.797E+02 6.798E+02 17.80 302.84 OK 6.963E+00 4.026E+02 4.026E+02 21.33 356.01 60.00

Final Mean for 3 Valid Peaks = 3.896E+02+/-5.693E+01 (14.61%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 2.124E+02 2.124E+02 49.20 OK

Final Mean for 1 Valid Peaks = 2.124E+02+/-1.045E+02 (49.20%)

Page: 4 Acquisition date: 29-AUG-2005 05:45:09

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234	3.896E+02 2.124E+02	5.693E+01 1.045E+02	3.781E+01 9.690E+01	6.206E+00 3.105E+00	10.305 2.192
Non-l	Identified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
CO-57 CD-109 PA-231 PA-234 NP-237 AM-241	-4.170E+00 1.277E+02 0.000E+00 0.000E+00 2.691E+01 2.675E+00	2.484E+01 2.295E+02 0.000E+00 0.000E+00 6.223E+01 5.937E+00	4.140E+01 3.792E+02 5.798E-01 3.752E-01 1.003E+02 1.048E+01	1.292E+01 4.905E+01 1.089E-02 7.051E-03 1.222E+01 2.460E-01	-0.101 0.337 0.000 0.000 0.268 0.255

VAX/VMS Peak Search Report Generated 29-AUG-2005 05:57:49.17

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_050809411_GE1_BAFIL_87551.CNF

Analyses by : PEAK V16.9 PEAKEFF V2.2

Client ID : VPSCR081705SL08

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 05:52:30 Sample ID : 0508094-11 Sample Quantity : 1.00000E+00 FILTER

Sample type : FILTER Sample Geometry : 0

Detector name : GE1 Detector Geometry: BAFIL

Start channel : 25 End channel : 4096

Sensitivity: 3.00000 Gaussian: 10.00000

Critical level : No

	JICAI	10101	. 110								
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	4	62.75	88	36	2.55	62.57	57	14	2.93E-01	18.0	3.17E+00
2	4	66.37	50	34	2.56	66.19	57	14	1.68E-01	31.5	
3	0	81.47	309	41	2.16	81.30	77	10	1.03E+00	6.9	
4	0	94.63	18	26	1.54	94.46	91	7	5.98E-02	52.9	
5	0	112.97	92	48	2.08	112.80	107	12	3.07E-01	18.3	
6	3	142.08	18	4	2.40	141.92	137	20	6.09E-02	38.0	2.48E+00
7	3	153.42	9	7	2.41	153.27	137	20	3.12E-02	59.6	
8	0	196.13	5	36	3.44	195.98	189		1.74E-022		
9	0	260.76	19	3	2.87	260.63	256		6.29E-02		
10	0	276.71	25	5	2.18	276.58	272		8.33E-02		
11	3	303.74	38	8	2.25	303.61	299		1.26E-01		1.70E+00
12	3	308.07	17	11	2.51	307.95	299		5.54E-02		
13	0	333.96	41	7	2.51	333.84	329		1.36E-01		
14	0	356.75	220	5	2.00	356.63	352		7.35E-01	7.0	
15	3	384.37	46	10	2.55	384.26	380	17	1.53E-01		2.21E+00
16	3	387.54	67	6	2.16	387.44	380	17			
17	3	391.74	18	4	2.43	391.64	380		6.00E-02		
18	0	416.26	23	19	2.69	416.16	412		7.57E-02		
19	0	437.53	50	0	2.10	437.44	435		1.67E-01		
20	0	468.80	7	6	2.32	468.71	466	6	2.33E-02	67.0	
19	0	437.53	50	0	2.10	437.44	435		1.67E-01 2.33E-02		

Summary of Nuclide Activity

Sample ID: 0508094-11 Acquisition date: 29-AUG-2005 05:52:30

Total number of lines in spectrum

20 16

Number of unidentified lines Number of lines tentatively identified by NID

4

20.00%

Nuclide Type : FISSION

Wtd Mean Wtd Mean

Uncorrected Decay Corr Decay Corr 2-Sigma

_ _ _ _ _ _ _

Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags

BA-133 10.50Y 1.00 4.452E+02 4.452E+02 0.642E+02 14.41

Total Activity: 4.452E+02 4.452E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean

Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags

TH-234 4.47E+09Y 1.00 3.550E+02 3.550E+02 1.294E+02 36.44

Total Activity: 3.550E+02 3.550E+02

Grand Total Activity: 8.002E+02 8.002E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page :

Sample ID : 0508094-11

Acquisition date: 29-AUG-2005 05:52:30

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

pCi/FILTER pCi/FILTER Status %Error %Eff Energy Nuclide %Abn 21.78 OK 33.00* 1.963E+01 4.295E+02 4.295E+02 BA-133 81.00 OK 4.915E+00 3.902E+02 3.902E+02 51.72 302.84 17.80 OK 6.963E+00 4.753E+02 4.753E+02 20.62 60.00 356.01

Final Mean for 3 Valid Peaks = 4.452E+02+/-6.416E+01 (14.41%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 3.550E+02 3.550E+02 36.44 OK

Final Mean for 1 Valid Peaks = 3.550E+02+/-1.294E+02 (36.44%)

Page: 4 Acquisition date: 29-AUG-2005 05:52:30

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234	4.452E+02 3.550E+02	6.416E+01 1.294E+02	3.754E+01 1.191E+02	6.162E+00 3.816E+00	11.860 2.981
Non-I	dentified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
CO-57 CD-109 PA-231 PA-234 NP-237	3.656E+00 1.720E+02 0.000E+00 0.000E+00 4.858E+01	2.679E+01 2.978E+02 0.000E+00 0.000E+00 8.260E+01	4.668E+01 4.652E+02 5.798E-01 3.752E-01 1.293E+02	1.457E+01 6.017E+01 1.089E-02 7.051E-03 1.574E+01	0.078 0.370 0.000 0.000 0.376

VAX/VMS Peak Search Report Generated 29-AUG-2005 06:05:28.68

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_050809412_GE1_BAFIL_87555.CNF

Analyses by : PEAK V16.9 PEAKEFF V2.2

Client ID : VPSCR081705SL09

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 06:00:15

Sample ID : 0508094-12 Sample Quantity : 1.00000E+00 FILTER

Sample type : FILTER Sample Geometry : 0

Detector name : GE1 Detector Geometry: BAFIL

Start channel : 25 End channel : 4096

Sensitivity: 3.00000 Gaussian: 10.00000

Critical level : No

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	1	62.27	83	39	1.92	62.10	58	12	2.76E-01	15.6	9.31E+00
2	1	67.11	40	43	1.91	66.93	58	12	1.32E-01	28.3	
3	0	81.78	306	40	2.03	81.61	77	11	1.02E+00	7.0	
4	0	94.02	16	34	1.00	93.85	90	8	5.42E-02	66.8	
5	2	112.43	74	20	1.92	112.26	107	18	2.45E-01	15.1	1.02E+00
6	2	116.79	29	15	2.16	116.62	107	18	9.69E-02	35.9	
7	0	214.22	7	11	2.69	214.08	211	7	2.17E-02	91.5	
8	0	277.55	40	15	1.87	277.42	272	10	1.33E-01	24.1	
9	3	303.53	54	5	1.96	303.41	299	12	1.79E-01	15.8	7.96E-01
10	3	307.81	9	8	2.51	307.69	299	12	2.94E-02	60.1	
11	0	334.43	21	12	2.49	334.32	331	7	7.00E-02	34.1	
12	0	356.75	210	6	2.10	356.64	351	12	7.01E-01	7.3	
13	0	386.40	114	23	4.63	386.29	382	9	3.80E-01	12.0	
14	0	392.35	21	5	1.32	392.24	391	5	7.05E-02	29.9	
15	0	437.93	42	0	1.57	437.83	435	6	1.40E-01	15.4	
16	0	468.86	13	0	2.17	468.77	465	8	4.33E-02	27.7	
17	0	511.33	12	0	1.66	511.25	507	9	4.00E-02	28.9	

Summary of Nuclide Activity Page: 2
Sample ID: 0508094-12 Acquisition date: 29-AUG-2005 06:00:15

Total number of lines in spectrum 17
Number of unidentified lines 13

Number of lines tentatively identified by NID 4 23.53%

Nuclide Type : FISSION

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags

BA-133 10.50Y 1.00 4.478E+02 4.479E+02 0.643E+02 14.35

Total Activity: 4.478E+02 4.479E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags

TH-234 4.47E+09Y 1.00 3.352E+02 3.352E+02 1.062E+02 31.68

Total Activity: 3.352E+02 3.352E+02

Grand Total Activity: 7.830E+02 7.830E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Sample ID : 0508094-12

Page: 3
Acquisition date: 29-AUG-2005 06:00:15

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

%Error Status pCi/FILTER pCi/FILTER %Eff Nuclide %Abn Energy 1.963E+01 4.259E+02 OK 21.94 81.00 33.00* 4.259E+02 BA-133 43.04 OK 4.915E+00 5.534E+02 5.534E+02 302.84 17.80 4.538E+02 OK 21.00 60.00 6.963E+00 4.538E+02 356.01

Final Mean for 3 Valid Peaks = 4.479E+02+/-6.425E+01 (14.35%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 3.352E+02 3.352E+02 31.68 OK

Final Mean for 1 Valid Peaks = 3.352E+02+/-1.062E+02 (31.68%)

Sample ID : 0508094-12

Page: 4
Acquisition date: 29-AUG-2005 06:00:15

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234	4.479E+02 3.352E+02	6.425E+01 1.062E+02	3.348E+01 1.233E+02	5.496E+00 3.951E+00	13.377 2.719
Non-l	dentified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
CO-57 CD-109 PA-231 PA-234 NP-237 AM-241	-8.382E-01 1.076E+02 0.000E+00 0.000E+00 3.695E+01 7.571E+00	2.614E+01 2.493E+02 0.000E+00 0.000E+00 7.583E+01 7.380E+00	4.447E+01 3.922E+02 5.798E-01 3.752E-01 1.184E+02 1.336E+01	1.388E+01 5.074E+01 1.089E-02 7.051E-03 1.442E+01 3.134E-01	-0.019 0.274 0.000 0.000 0.312 0.567

VAX/VMS Peak Search Report Generated 29-AUG-2005 06:13:17.27

: DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_050809413_GE1_BAFIL_87556.CNF Configuration

Analyses by : PEAK V16.9 PEAKEFF V2.2

: VPSCR081705SL10 Client ID

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 06:08:03 Sample Quantity : 1.00000E+00 FILTER : 0508094-13 Sample ID

Sample type Sample Geometry : 0 : FILTER

Detector name : GE1 Detector Geometry: BAFIL

Elapsed real time: 0 00:05:00.06 0.0% Elapsed live time: 0 00:05:00.00

End channel : 4096 Start channel : 25

Sensitivity : 3.00000 Critical level : No : 10.00000 Gaussian

CET	LICAL	rever	: NO								
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	4	62.58	73	35	2.26	62.40	58	17	2.42E-01	18.1	1.05E+00
2	4	66.37	26	34	2.56	66.19	58	17	8.64E-02	54.4	
3	0	81.90	218	39	2.04	81.72	77	11	7.27E-01	8.9	
4	0	93.54	18	29	4.59	93.37	89	8	6.05E-02	55.9	
5	0	113.00	75	33	1.98	112.83	107	11	2.50E-01	18.8	
6	0	149.28	13	14	1.89	149.12	145	9	4.17E-02	60.1	
7	0	277.31	14	5	1.76	277.18	274	6	4.81E-02	35.2	
8	0	303.93	42	12	2.00	303.81	301		1.40E-01		
9	6	334.20	28	0	2.64	334.09	330		9.19E-02		1.47E+00
10	6	338.32	9	0	2.29	338.20	330	11	2.84E-02	35.2	
11	0	356.99	168	19	1.96	356.88	352		5.60E-01	9.2	
12	4	384.19	51	3	2.58	384.09	381		1.70E-01		2.22E+00
13	4	387.56	68	4	2.24	387.46	381		2.27E-01		
14	4	391.83	17	3	2.62	391.72	381		5.75E-02		
15	4	414.99	15	3	2.82	414.90	413		5.00E-02		7.84E-01
16	4	418.72	6	7	2.83	418.62	413	9	1.98E-02	102.4	
17	0	438.07	22	9	2.38	437.98	432	-	7.22E-02		
18	0	467.81	11	0	3.45	467.73	465		3.67E-02		
19	0	511.08	9	0	3.00	511.00	508	7	3.00E-02	33.3	

Summary of Nuclide Activity

Acquisition date : 29-AUG-2005 06:08:03 Sample ID : 0508094-13

_ - - - - - - -

19 Total number of lines in spectrum Number of unidentified lines 15

Number of lines tentatively identified by NID 4 21.05%

Nuclide Type : FISSION

Wtd Mean Wtd Mean

Uncorrected Decay Corr Decay Corr 2-Sigma Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags Nuclide Hlife

1.00 3.349E+02 3.349E+02 0.547E+02 16.34 10.50Y BA-133

> 3.349E+02 Total Activity: 3.349E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma

pCi/FILTER 2-Sigma Error %Error Flags Nuclide Hlife Decay pCi/FILTER

TH-234 4.47E+09Y 1.00 2.936E+02 2.936E+02 1.075E+02 36.60

> _____ 2.936E+02 Total Activity: 2.936E+02

Grand Total Activity: 6.285E+02 6.285E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page: 2

Sample ID : 0508094-13

Page: 3
Acquisition date: 29-AUG-2005 06:08:03

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

Status pCi/FILTER pCi/FILTER %Error %Eff Nuclide %Abn Energy 24.56 OK BA-133 81.00 33.00* 1.963E+01 3.034E+02 3.034E+02 OK 4.915E+00 4.331E+02 4.331E+02 51.46 302.84 17.80 6.963E+00 3.625E+02 3.625E+02 23.86 OK 356.01 60.00

Final Mean for 3 Valid Peaks = 3.349E+02+/-5.473E+01 (16.34%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 2.936E+02 2.936E+02 36.60 OK

Final Mean for 1 Valid Peaks = 2.936E+02+/-1.075E+02 (36.60%)

Page: 4 Acquisition date : 29-AUG-2005 06:08:03

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234	3.349E+02 2.936E+02	5.473E+01 1.075E+02	3.808E+01 1.162E+02	6.250E+00 3.724E+00	8.795 2.526
Non-I	dentified Nuclides	-			
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
CO-57 CD-109 PA-231 PA-234 NP-237	-4.540E+00 1.807E+02 0.000E+00 0.000E+00	2.565E+01 2.378E+02 0.000E+00 0.000E+00	4.254E+01 4.069E+02 5.798E-01 3.752E-01	1.328E+01 5.264E+01 1.089E-02 7.051E-03 1.360E+01	-0.107 0.444 0.000 0.000 0.430

VAX/VMS Peak Search Report Generated 29-AUG-2005 06:19:41.12

: DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_050809414_GE1_BAFIL_87557.CNF Configuration

Analyses by : PEAK V16.9 PEAKEFF V2.2

Client ID : VPSCR081705SL11

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 06:14:26 $\bar{\text{Sample}}$ Quantity : 1.00000E+00 FILTER Sample ID : 0508094-14

Sample type Sample Geometry : 0 : FILTER

Detector name : GE1 Detector Geometry: BAFIL

Elapsed real time: 0 00:05:00.06 0.0% Elapsed live time: 0 00:05:00.00

End channel : 4096 Start channel : 25

: 10.00000 : 3.00000 Gaussian Sensitivity

Critical level : No

		••								
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
4	62.44	97	30	2.54	62.26	58	18	3.23E-01	14.2	1.84E+00
4	66.89	36	20	2.09	66.71	58	18	1.21E-01	28.3	
0	81.56	283	50	1.84	81.39	76	11	9.44E-01	7.6	
0	95.10	23	37	1.41	94.93	90	8	7.74E-02	50.2	
0	113.01	110	23	2.75	112.85	107	13	3.67E-01	13.1	
0	278.75	18	12	2.82	278.62	274	7	5.91E-02	40.4	
1	301.12	11	2	1.88	301.00	299	15	3.66E-02	34.1	7.34E+00
1	308.11	17	3	2.08	307.99	299	15	5.61E-02	32.3	
1	332.12	7	2	1.90	332.00	330	13	2.27E-02	52.9	3.73E+00
1	338.12	7	8	1.90	338.00	330	13	2.44E-02	83.1	
4	352.30	6	0	2.10	352.19	351	10	1.99E-02	31.3	2.22E-01
4	356.65	196	4	1.84	356.54	351	10	6.55E-01	7.3	
2	384.15	33	10	1.98	384.05	382	9	1.09E-01	22.9	2.28E+00
2	387.51	62	24	2.15	387.40	382	9	2.05E-01	19.9	
0	415.74	24	5	5.56	415.64	411	10	7.99E-02	26.9	
0	437.63	48	2	1.92	437.54	434	7	1.61E-01	15.1	
0	468.36	11	0	1.81	468.27	466	5	3.67E-02	30.2	
	4 4 0 0 0 0 1 1 1 4 4 2 2 0 0	4 62.44 4 66.89 0 81.56 0 95.10 0 113.01 0 278.75 1 301.12 1 308.11 1 332.12 1 338.12 4 352.30 4 356.65 2 384.15 2 387.51 0 415.74 0 437.63	4 62.44 97 4 66.89 36 0 81.56 283 0 95.10 23 0 113.01 110 0 278.75 18 1 301.12 11 1 308.11 17 1 332.12 7 1 338.12 7 4 352.30 6 4 356.65 196 2 384.15 33 2 387.51 62 0 415.74 24 0 437.63 48	4 62.44 97 30 4 66.89 36 20 0 81.56 283 50 0 95.10 23 37 0 113.01 110 23 0 278.75 18 12 1 301.12 11 2 1 308.11 17 3 1 332.12 7 2 1 338.12 7 8 4 352.30 6 0 4 356.65 196 4 2 384.15 33 10 2 387.51 62 24 0 415.74 24 5 0 437.63 48 2	4 62.44 97 30 2.54 4 66.89 36 20 2.09 0 81.56 283 50 1.84 0 95.10 23 37 1.41 0 113.01 110 23 2.75 0 278.75 18 12 2.82 1 301.12 11 2 1.88 1 308.11 17 3 2.08 1 332.12 7 2 1.90 1 338.12 7 8 1.90 4 356.65 196 4 1.84 2 384.15 33 10 1.98 2 387.51 62 24 2.15 0 437.63 48 2 1.92	4 62.44 97 30 2.54 62.26 4 66.89 36 20 2.09 66.71 0 81.56 283 50 1.84 81.39 0 95.10 23 37 1.41 94.93 0 113.01 110 23 2.75 112.85 0 278.75 18 12 2.82 278.62 1 301.12 11 2 1.88 301.00 1 308.11 17 3 2.08 307.99 1 332.12 7 2 1.90 332.00 1 338.12 7 8 1.90 338.00 4 352.30 6 0 2.10 352.19 4 356.65 196 4 1.84 356.54 2 387.51 62 24 2.15 387.40 0 415.74 24 5 5.56 415.64 0 437.63 48 2 1.92 437.54	4 62.44 97 30 2.54 62.26 58 4 66.89 36 20 2.09 66.71 58 0 81.56 283 50 1.84 81.39 76 0 95.10 23 37 1.41 94.93 90 0 113.01 110 23 2.75 112.85 107 0 278.75 18 12 2.82 278.62 274 1 301.12 11 2 1.88 301.00 299 1 308.11 17 3 2.08 307.99 299 1 332.12 7 2 1.90 332.00 330 4 352.30 6 0 2.10 352.19 351 4 356.65 196 4 1.84 356.54 351 2 384.15 33 10 1.98 384.05 382 2 387.51 62 24 2.15 387.40 382 0 <td< td=""><td>4 62.44 97 30 2.54 62.26 58 18 4 66.89 36 20 2.09 66.71 58 18 0 81.56 283 50 1.84 81.39 76 11 0 95.10 23 37 1.41 94.93 90 8 0 113.01 110 23 2.75 112.85 107 13 0 278.75 18 12 2.82 278.62 274 7 1 301.12 11 2 1.88 301.00 299 15 1 308.11 17 3 2.08 307.99 299 15 1 332.12 7 2 1.90 332.00 330 13 1 352.30 6 0 2.10 352.19 351 10 4 356.65 196 4 1.84 356.54 351 10 2 384.15 33 10 1.98 384.05 382</td><td>4 62.44 97 30 2.54 62.26 58 18 3.23E-01 4 66.89 36 20 2.09 66.71 58 18 1.21E-01 0 81.56 283 50 1.84 81.39 76 11 9.44E-01 0 95.10 23 37 1.41 94.93 90 8 7.74E-02 0 113.01 110 23 2.75 112.85 107 13 3.67E-01 0 278.75 18 12 2.82 278.62 274 7 5.91E-02 1 301.12 11 2 1.88 301.00 299 15 3.66E-02 1 308.11 17 3 2.08 307.99 299 15 5.61E-02 1 332.12 7 2 1.90 332.00 330 13 2.27E-02 2 338.12 7 8 1.90 338.00 330 13 2.44E-02 4 352.30 6 0</td><td>4 62.44 97 30 2.54 62.26 58 18 3.23E-01 14.2 4 66.89 36 20 2.09 66.71 58 18 1.21E-01 28.3 0 81.56 283 50 1.84 81.39 76 11 9.44E-01 7.6 0 95.10 23 37 1.41 94.93 90 8 7.74E-02 50.2 0 113.01 110 23 2.75 112.85 107 13 3.67E-01 13.1 0 278.75 18 12 2.82 278.62 274 7 5.91E-02 40.4 1 301.12 11 2 1.88 301.00 299 15 3.66E-02 34.1 1 308.11 17 3 2.08 307.99 299 15 5.61E-02 32.3 1 332.12 7 2 1.90 338.00 330 13 2.27E-02 52.9 1 352.30 6 0 2.10<!--</td--></td></td<>	4 62.44 97 30 2.54 62.26 58 18 4 66.89 36 20 2.09 66.71 58 18 0 81.56 283 50 1.84 81.39 76 11 0 95.10 23 37 1.41 94.93 90 8 0 113.01 110 23 2.75 112.85 107 13 0 278.75 18 12 2.82 278.62 274 7 1 301.12 11 2 1.88 301.00 299 15 1 308.11 17 3 2.08 307.99 299 15 1 332.12 7 2 1.90 332.00 330 13 1 352.30 6 0 2.10 352.19 351 10 4 356.65 196 4 1.84 356.54 351 10 2 384.15 33 10 1.98 384.05 382	4 62.44 97 30 2.54 62.26 58 18 3.23E-01 4 66.89 36 20 2.09 66.71 58 18 1.21E-01 0 81.56 283 50 1.84 81.39 76 11 9.44E-01 0 95.10 23 37 1.41 94.93 90 8 7.74E-02 0 113.01 110 23 2.75 112.85 107 13 3.67E-01 0 278.75 18 12 2.82 278.62 274 7 5.91E-02 1 301.12 11 2 1.88 301.00 299 15 3.66E-02 1 308.11 17 3 2.08 307.99 299 15 5.61E-02 1 332.12 7 2 1.90 332.00 330 13 2.27E-02 2 338.12 7 8 1.90 338.00 330 13 2.44E-02 4 352.30 6 0	4 62.44 97 30 2.54 62.26 58 18 3.23E-01 14.2 4 66.89 36 20 2.09 66.71 58 18 1.21E-01 28.3 0 81.56 283 50 1.84 81.39 76 11 9.44E-01 7.6 0 95.10 23 37 1.41 94.93 90 8 7.74E-02 50.2 0 113.01 110 23 2.75 112.85 107 13 3.67E-01 13.1 0 278.75 18 12 2.82 278.62 274 7 5.91E-02 40.4 1 301.12 11 2 1.88 301.00 299 15 3.66E-02 34.1 1 308.11 17 3 2.08 307.99 299 15 5.61E-02 32.3 1 332.12 7 2 1.90 338.00 330 13 2.27E-02 52.9 1 352.30 6 0 2.10 </td

Summary of Nuclide Activity

Acquisition date : 29-AUG-2005 06:14:26 Sample ID : 0508094-14

17 Total number of lines in spectrum 13

Number of unidentified lines Number of lines tentatively identified by NID 4 23.53%

Nuclide Type : FISSION

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr

2-Sigma Error %Error Flags Decay pCi/FILTER pCi/FILTER Nuclide Hlife

4.090E+02 0.633E+02 15.48 1.00 4.089E+02 BA-133 10.50Y

_____ _____

Total Activity: 4.089E+02 4.090E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma

pCi/FILTER 2-Sigma Error %Error Flags

Decay pCi/FILTER Nuclide Hlife 3.914E+02 1.127E+02 28.78 1.00 3.914E+02 TH-234 4.47E+09Y

3.914E+02

_____ _____

8.004E+02 Grand Total Activity: 8.004E+02

Total Activity: 3.914E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Page :

Sample ID : 0508094-14

Page : Acquisition date : 29-AUG-2005 06:14:26

Nuclide Type: FISSION Uncorrected Decay Corr 2-Sigma

pCi/FILTER pCi/FILTER %Error Status %Eff Nuclide Energy %Abn 3.941E+02 22.79 OK BA-133 81.00 33.00* 1.963E+01 3.941E+02

4.915E+00 1.131E+02 1.132E+02 74.12 <<WM N-Sigma 302.84 17.80

6.963E+00 4.236E+02 4.237E+02 21.06 60.00 356.01

Final Mean for 2 Valid Peaks = 4.090E+02+/-6.330E+01 (15.48%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide %Abn %Eff pCi/FILTER pCi/FILTER %Error Status Energy 5.865E+01 3.914E+02 3.914E+02 28.78 OK 63.29 3.80* TH-234

Final Mean for 1 Valid Peaks = 3.914E+02+/-1.127E+02 (28.78%)

Page: 4 Acquisition date : 29-AUG-2005 06:14:26

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234	4.090E+02 3.914E+02	6.330E+01 1.127E+02	3.528E+01 1.021E+02	5.792E+00 3.272E+00	11.591 3.833
Non-I	dentified Nuclides	-			
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
CO-57 CD-109 PA-231 PA-234 NP-237 AM-241	-1.062E+01 -8.335E+01 0.000E+00 0.000E+00 -5.043E+00	2.494E+01 3.698E+02 0.000E+00 0.000E+00 9.991E+01	3.915E+01 4.703E+02 5.798E-01 3.752E-01 1.327E+02	1.222E+01 6.084E+01 1.089E-02 7.051E-03 1.616E+01 2.968E-01	-0.271 -0.177 0.000 0.000 -0.038 0.819

VAX/VMS Peak Search Report Generated 29-AUG-2005 06:25:26.06

: DKA100:[GAMMA.SCUSR.ARCHIVE]SMP_050809415_GE1_BAFIL_87558.CNF Configuration

Analyses by : PEAK V16.9 PEAKEFF V2.2

: VPSCR081705SL12 Client ID

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 06:20:12 Sample Quantity : 1.00000E+00 FILTER

Sample ID : 0508094-15 : FILTER Sample Geometry : 0 Sample type

Detector name : GE1 Detector Geometry: BAFIL

Elapsed live time: 0 00:05:00.00 Elapsed real time: 0 00:05:00.06 0.0%

End channel : 4096 Start channel : 25

Gaussian : 10.00000 : 3.00000 Sensitivity

Critical level : No

LCar	10101	. 110								
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
3	62.56	78	37	2.32	62.38	58	13	2.60E-01	17.8	7.19E-01
3	66.60	16	36	2.32	66.42	58	13	5.36E-02	78.2	
0	81.87	256	69	2.09	81.70	76	12	8.54E-01	9.0	
0	111.40	61	65	1.92	111.23	107	10	2.03E-01	28.2	
0	192.01	15	18	2.02	191.86	189	7	4.83E-02	54.6	
0	276.89	20	9	1.23	276.76	276	5	6.80E-02	33.9	
1	303.31	70	8	1.99	303.19	298	14	2.32E-01	13.8	6.68E-01
1	308.31	10	6	2.08	308.19	298	14	3.28E-02	57.8	
0	335.41	37	10	2.24	335.29	328	13	1.24E-01	23.9	
0	356.71	194	8	2.20	356.60	351	11	6.46E-01	7.7	
2	384.51	39	8	2.32	384.40	381	14	1.30E-01	25.3	1.21E+00
2	387.70	83	5	2.32	387.60	381	14	2.76E-01	14.3	
2	391.46	15	1	2.32	391.36	381	14	4.94E-02	57.4	
1	415.17	14	0	2.12	415.08	413	13	4.50E-02	28.7	1.64E+00
1	419.01	11	2	2.12	418.91	413	13	3.82E-02	37.3	
1	422.29	7	3	2.13	422.19	413	13	2.40E-02	59.3	
0	437.67	42	0	2.20	437.57	434	8	1.40E-01	15.4	
	It 3 3 0 0 0 1 1 0 2 2 1 1 1	3 62.56 3 66.60 0 81.87 0 111.40 0 192.01 0 276.89 1 303.31 1 308.31 0 335.41 0 356.71 2 384.51 2 387.70 2 391.46 1 415.17 1 419.01 1 422.29	It Energy Area 3 62.56 78 3 66.60 16 0 81.87 256 0 111.40 61 0 192.01 15 0 276.89 20 1 303.31 70 1 308.31 10 0 335.41 37 0 356.71 194 2 384.51 39 2 387.70 83 2 391.46 15 1 415.17 14 1 419.01 11 1 422.29 7	It Energy Area Bkgnd 3 62.56 78 37 3 66.60 16 36 0 81.87 256 69 0 111.40 61 65 0 192.01 15 18 0 276.89 20 9 1 303.31 70 8 1 308.31 10 6 0 335.41 37 10 0 356.71 194 8 2 384.51 39 8 2 387.70 83 5 2 391.46 15 1 1 415.17 14 0 1 419.01 11 2 1 422.29 7 3	It Energy Area Bkgnd FWHM 3 62.56 78 37 2.32 3 66.60 16 36 2.32 0 81.87 256 69 2.09 0 111.40 61 65 1.92 0 192.01 15 18 2.02 0 276.89 20 9 1.23 1 303.31 70 8 1.99 1 308.31 10 6 2.08 0 335.41 37 10 2.24 0 356.71 194 8 2.20 2 384.51 39 8 2.32 2 387.70 83 5 2.32 2 391.46 15 1 2.32 1 415.17 14 0 2.12 1 419.01 11 2 2.12 1 422.29 7 3 2.13	It Energy Area Bkgnd FWHM Channel 3 62.56 78 37 2.32 62.38 3 66.60 16 36 2.32 66.42 0 81.87 256 69 2.09 81.70 0 111.40 61 65 1.92 111.23 0 192.01 15 18 2.02 191.86 0 276.89 20 9 1.23 276.76 1 303.31 70 8 1.99 303.19 1 308.31 10 6 2.08 308.19 0 335.41 37 10 2.24 335.29 0 356.71 194 8 2.20 356.60 2 384.51 39 8 2.32 384.40 2 387.70 83 5 2.32 387.60 2 391.46 15 1 2.32 391.36 1 415.17 14 0 2.12 415.08 1 419.01 11 2 2.12 418.91 1 422.29 7 3 2.13 422.19	It Energy Area Bkgnd FWHM Channel Left 3 62.56 78 37 2.32 62.38 58 3 66.60 16 36 2.32 66.42 58 0 81.87 256 69 2.09 81.70 76 0 111.40 61 65 1.92 111.23 107 0 192.01 15 18 2.02 191.86 189 0 276.89 20 9 1.23 276.76 276 1 303.31 70 8 1.99 303.19 298 1 308.31 10 6 2.08 308.19 298 1 308.31 10 6 2.08 308.19 298 0 335.41 37 10 2.24 335.29 328 0 356.71 194 8 2.20 356.60 351 2 384.51 39 8 2.32 384.40 381 2 387.70 83 5 2.32 387.60 381 2 391.46 15 1 2.32 391.36 381 1 415.17 14 0 2.12 415.08 413 1 419.01 11 2 2.12 418.91 413 1 422.29 7 3 2.13 422.19 413	It Energy Area Bkgnd FWHM Channel Left Pw 3 62.56 78 37 2.32 62.38 58 13 3 66.60 16 36 2.32 66.42 58 13 0 81.87 256 69 2.09 81.70 76 12 0 111.40 61 65 1.92 111.23 107 10 0 192.01 15 18 2.02 191.86 189 7 0 276.89 20 9 1.23 276.76 276 5 1 303.31 70 8 1.99 303.19 298 14 1 308.31 10 6 2.08 308.19 298 14 0 335.41 37 10 2.24 335.29 328 13 0 356.71 194 8 2.20 356.60 351 11 2 384.51 39 8 2.32 384.40 381 <	It Energy Area Bkgnd FWHM Channel Left Pw Cts/Sec 3 62.56 78 37 2.32 62.38 58 13 2.60E-01 3 66.60 16 36 2.32 66.42 58 13 5.36E-02 0 81.87 256 69 2.09 81.70 76 12 8.54E-01 0 111.40 61 65 1.92 111.23 107 10 2.03E-01 0 192.01 15 18 2.02 191.86 189 7 4.83E-02 0 276.89 20 9 1.23 276.76 276 5 6.80E-02 1 303.31 70 8 1.99 303.19 298 14 2.32E-01 1 308.31 10 6 2.08 308.19 298 14 3.28E-02 0 356.71 194 8 2.20 356.60	It Energy Area Bkgnd FWHM Channel Left Pw Cts/Sec %Err 3 62.56 78 37 2.32 62.38 58 13 2.60E-01 17.8 3 66.60 16 36 2.32 66.42 58 13 5.36E-02 78.2 0 81.87 256 69 2.09 81.70 76 12 8.54E-01 9.0 0 111.40 61 65 1.92 111.23 107 10 2.03E-01 28.2 0 192.01 15 18 2.02 191.86 189 7 4.83E-02 54.6 0 276.89 20 9 1.23 276.76 276 5 6.80E-02 33.9 1 303.31 70 8 1.99 303.19 298 14 2.32E-01 13.8 1 308.31 10 6 2.08 308.19 298 14 3.28E-02 57.8 0 335.41 37 10 2.24 335.29 328 13 1.24E-01 23.9 0 356.71 194 8 2.20 356.60 351 11 6.46E-01 7.7 2 384.51 39 8 2.32 384.40 381 14 1.30E-01 25.3 2 387.70 83 5 2.32 387.60 381 14 2.76E-01 14.3 2 391.46 15 1 2.32 391.36 381 14 4.94E-02 57.4 1 415.17 14 0 2.12 415.08 413 13 3.82E-02 37.3 1 422.29 7 3 2.13 422.19 413 13 3.82E-02 37.3

Summary of Nuclide Activity

Acquisition date : 29-AUG-2005 06:20:12 Sample ID : 0508094-15

17

Total number of lines in spectrum

Number of unidentified lines 13

Number of lines tentatively identified by NID 4 23.53%

Nuclide Type : FISSION

Wtd Mean Wtd Mean 2-Sigma

Uncorrected Decay Corr Decay Corr 2-Sigma Error %Error Flags Decay pCi/FILTER pCi/FILTER Nuclide Hlife

15.35 0.616E+02 1.00 4.014E+02 4.015E+02 BA-133 10.50Y

_____ _____

Total Activity : 4.014E+02 4.015E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean

Uncorrected Decay Corr Decay Corr 2-Sigma

pCi/FILTER 2-Sigma Error %Error Flags Decay pCi/FILTER Hlife Nuclide

3.150E+02 1.133E+02 35.96 1.00 3.150E+02 TH-234 4.47E+09Y

> 3.150E+02 Total Activity: 3.150E+02

Grand Total Activity: 7.165E+02 7.165E+02

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Page :

Nuclide Line Activity Report

Sample ID : 0508094-15

Page: 3
Acquisition date: 29-AUG-2005 06:20:12

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

pCi/FILTER pCi/FILTER %Error Status Energy %Eff Nuclide %Abn 3.565E+02 24.69 OK 33.00* 1.963E+01 3.564E+02 BA-133 81.00 7.177E+02 40.18 OK 4.915E+00 7.177E+02 302.84 17.80 OK 6.963E+00 4.179E+02 4.179E+02 21.65 356.01 60.00

Final Mean for 3 Valid Peaks = 4.015E+02+/-6.164E+01 (15.35%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 3.150E+02 3.150E+02 35.96 OK

Final Mean for 1 Valid Peaks = 3.150E+02+/-1.133E+02 (35.96%)

Flag: "*" = Keyline

Page: 4
Acquisition date: 29-AUG-2005 06:20:12

---- Identified Nuclides ----

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234	4.015E+02 3.150E+02	6.164E+01 1.133E+02	3.586E+01 1.102E+02	5.887E+00 3.531E+00	11.195 2.859
Non-	Identified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
CO-57 CD-109 PA-231 PA-234 NP-237	-4.234E+01 -8.047E+01 0.000E+00 0.000E+00	2.952E+01 2.921E+02 0.000E+00 0.000E+00	3.551E+01 4.716E+02 5.798E-01 3.752E-01	1.109E+01 6.100E+01 1.089E-02 7.051E-03	-1.193 -0.171 0.000 0.000

VAX/VMS Peak Search Report Generated 29-AUG-2005 06:31:12.10

Configuration : DKA100:[GAMMA.SCUSR.ARCHIVE]SMP 050809416 GE1_BAFIL_87559.CNF

Analyses by : PEAK V16.9 PEAKEFF V2.2

Client ID : VPSCR081705SL13

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 06:25:54 Sample Quantity : 1.00000E+00 FILTER Sample ID : 0508094-16

Sample type Sample Geometry : 0 : FILTER

Detector name : GE1 Detector Geometry: BAFIL

Elapsed live time: 0 00:05:00.00 Elapsed real time: 0 00:05:00.06 0.0%

End channel : 4096 Start channel : 25

Gaussian : 10.00000 Sensitivity : 3.00000

Critical level : No

O = - \		10.01	. 110								
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	62.35	61	42	1.94	62.17	59	6	2.04E-01	21.1	
2	0	66.76	40	39	2.08	66.58	65	. 6	1.34E-01	30.2	
3	0	81.80	291	28	1.97	81.62	78	7	9.70E-01	6.6	
4	0	94.58	21	46	1.86	94.41	89	9	7.00E-02	62.7	
5	0	112.09	63	38	2.35	111.93	108	7	2.09E-01	20.7	
6	0	277.94	31	4	2.46	277.81	273	12	1.02E-01	23.9	
7	0	303.94	37	14	1.84	303.81	300	9	1.23E-01	24.4	
8	0	336.29	34	8	2.40	336.17	332	11	1.15E-01	23.4	
9	1	353.11	9	1	1.91	353.00	352	9	3.02E-02	26.4	9.63E+00
10	1	356.92	194	5	1.87	356.81	352	9	6.48E-01	7.3	
11	0	365.81	10	5	2.00	365.70	362	6	3.22E-02	50.7	
12	4	385.00	52	6	2.81	384.89	381	15	1.72E-01	22.5	1.84E+00
13	4	387.67	77	3	2.14	387.57	381	15	2.56E-01	15.2	
14	4	391.97	16	0	2.58	391.87	381	15	5.34E-02	52.2	
15	2	414.69	17	1	2.33	414.59	411	15	5.50E-02	30.9	9.01E-01
16	2	418.50	11	2	2.34	418.41	411	15	3.78E-02	46.8	
17	0	437.80	48	0	1.64	437.71	435	6	1.60E-01	14.4	
18	0	468.34	10	5	1.76	468.25	465	7	3.37E-02	48.7	

Summary of Nuclide Activity Page: 2
Sample ID: 0508094-16 Acquisition date: 29-AUG-2005 06:25:54

Total number of lines in spectrum 18
Number of unidentified lines 14

Number of lines tentatively identified by NID 4 22.22%

Nuclide Type : FISSION

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags
BA-133 10.50Y 1.00 4.096E+02 4.096E+02 0.595E+02 14.52

Total Activity: 4.096E+02 4.096E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags
TH-234 4.47E+09Y 1.00 2.471E+02 2.471E+02 1.049E+02 42.47

Total Activity: 2.471E+02 2.471E+02

Grand Total Activity: 6.567E+02 6.567E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Nuclide Line Activity Report

Sample ID : 0508094-16

Page: 3
Acquisition date: 29-AUG-2005 06:25:54

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

pCi/FILTER pCi/FILTER %Error %Eff Status Nuclide %Abn Energy OK 1.963E+01 4.048E+02 4.048E+02 21.43 BA-133 81.00 33.00* 3.813E+02 4.915E+00 3.812E+02 56.83 OK 302.84 17.80 OK 6.963E+00 4.193E+02 4.193E+02 21.02 60.00 356.01

Final Mean for 3 Valid Peaks = 4.096E+02+/-5.946E+01 (14.52%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 2.471E+02 2.471E+02 42.47 OK

Final Mean for 1 Valid Peaks = 2.471E+02+/-1.049E+02 (42.47%)

Flag: "*" = Keyline

Combined Activity-MDA Report Sample ID: 0508094-16

Page: 4 Acquisition date : 29-AUG-2005 06:25:54

---- Identified Nuclides ----

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234	4.096E+02 2.471E+02	5.946E+01 1.049E+02	3.808E+01 1.469E+02	6.250E+00 4.706E+00	10.758 1.682
Non-I	dentified Nuclides				
	Key-Line Activity K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/FILTER)Ided		(pCi/FILTER)		

VAX/VMS Peak Search Report Generated 29-AUG-2005 06:36:51.85

: DKA100:[GAMMA.SCUSR.ARCHIVE]SMP 050809417 GE1 BAFIL 87560.CNF Configuration

Analyses by : PEAK V16.9 PEAKEFF V2.2

: VPSCR081705SL14 Client ID

Deposition Date :

Sample Date : 29-AUG-2005 00:00:00 Acquisition date : 29-AUG-2005 06:31:34 Sample Quantity : 1.00000E+00 FILTER Sample ID : 0508094-17

Sample Geometry : 0 Sample type : FILTER

Detector name : GE1 Detector Geometry: BAFIL

Elapsed live time: 0 00:05:00.00 Elapsed real time: 0 00:05:00.06 0.0%

End channel : 4096 Start channel : 25

Gaussian : 10.00000 Sensitivity : 3.00000

Critical level : No

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	5	62.24	70	53	2.80	62.06	58	16	2.33E-01	21.3	1.99E+00
2	5	66.50	37	37	2.56	66.32	58	16	1.25E-01	39.3	
3	0	81.76	218	65	1.96	81.58	77	11	7.27E-01	10.0	
4	0	93.80	25	41	2.12	93.63	89		8.17E-02		
5	4	112.57	50	29	2.14	112.41	109	12	1.68E-01	21.6	3.38E+00
6	4	116.99	21	22	2.30	116.82	109	12	7.05E-02	51.6	
7	0	142.72	26	22	3.79	142.56	139	8	8.79E-02	36.4	
8	0	163.94	21	38	5.81	163.78	157	14	7.02E-02	66.1	
8 9	0	277.83	26	6	2.13	277.70	274	9	8.58E-02	26.7	
10	0	303.99	47	14	2.03	303.87	301		1.57E-01		
11	1	334.31	32	4	2.09	334.19	330		1.08E-01		8.30E-01
12	1	337.93	10	6	2.09	337.81	330		3.35E-02		
13	0	356.72	184	4	2.03	356.61	354		6.12E-01	7.6	
14	0	366.57	10	11	1.87	366.46	362	9	3.40E-02	66.6	
15	0	377.05	16	5	3.18	376.94	371	10			
16	5	384.27	30	4	3.03	384.16	382	9	9.93E-02	24.3	3.06E+00
17	5	387.36	45	18	2.35	387.25	382	9	1.51E-01	23.7	
18	0	391.82	15	12	1.35	391.72	391	5	4.90E-02	46.0	
19	0	417.09	19	8	1.79	416.99	413	9	6.17E-02	34.7	
20	0	437.85	41	2	1.66	437.75	434	7	1.38E-01	16.4	
21	0	468.86	6	1	1.72	468.78	466		1.93E-02		
22	0	511.41	8	1	1.67	511.34	509	5	2.54E-02	42.7	

Summary of Nuclide Activity Page: 2
Sample ID: 0508094-17 Acquisition date: 29-AUG-2005 06:31:34

Total number of lines in spectrum 22
Number of unidentified lines 18

Number of lines tentatively identified by NID 4 18.18%

Nuclide Type : FISSION

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags

----**---**

BA-133 10.50Y 1.00 3.542E+02 3.542E+02 0.563E+02 15.89

Total Activity: 3.542E+02 3.542E+02

Nuclide Type : NATURAL

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/FILTER pCi/FILTER 2-Sigma Error %Error Flags

TH-234 4.47E+09Y 1.00 2.826E+02 2.826E+02 1.213E+02 42.94

Total Activity: 2.826E+02 2.826E+02

Grand Total Activity: 6.367E+02 6.367E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Nuclide Line Activity Report

Sample ID : 0508094-17

Page: 3
Acquisition date: 29-AUG-2005 06:31:34

Nuclide Type: FISSION

Uncorrected Decay Corr 2-Sigma

pCi/FILTER pCi/FILTER %Error Status %Eff Nuclide Energy %Abn 26.12 33.00* 1.963E+01 3.034E+02 3.034E+02 OK BA-133 81.00 OK 4.915E+00 4.847E+02 4.847E+02 49.13 302.84 17.80 OK 6.963E+00 3.957E+02 3.957E+02 21.43 356.01 60.00

Final Mean for 3 Valid Peaks = 3.542E+02+/-5.626E+01 (15.89%)

Nuclide Type: NATURAL

Uncorrected Decay Corr 2-Sigma

Nuclide Energy %Abn %Eff pCi/FILTER pCi/FILTER %Error Status TH-234 63.29 3.80* 5.865E+01 2.826E+02 2.826E+02 42.94 OK

Final Mean for 1 Valid Peaks = 2.826E+02+/-1.213E+02 (42.94%)

Flag: "*" = Keyline

Page: 4 Acquisition date : 29-AUG-2005 06:31:34

---- Identified Nuclides ----

Nuclide	Activity (pCi/FILTER)	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
BA-133 TH-234	3.542E+02 2.826E+02	5.626E+01 1.213E+02	4.307E+01 1.219E+02	7.071E+00 3.906E+00	8.222 2.318
Non-I	dentified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/FILTER)Ided	Act error	MDA (pCi/FILTER)	MDA error	Act/MDA
CO-57 CD-109 PA-231 PA-234 NP-237 AM-241	2.639E+00 -4.582E+01 0.000E+00 0.000E+00 -1.915E+01	2.582E+01 3.261E+02 0.000E+00 0.000E+00 8.970E+01 7.033E+00	4.497E+01 4.269E+02 5.798E-01 3.752E-01 1.152E+02 1.353E+01	1.404E+01 5.523E+01 1.089E-02 7.051E-03 1.402E+01 3.175E-01	0.059 -0.107 0.000 0.000 -0.166 0.880